國立臺灣大學107學年度轉學生招生考試試題

科目:微積分(A)

題號:17

題號: 17 共 1 頁之第 1 頁

※注意:請於試卷上「非選擇題作答區」標明題號並依序作答。 ※禁止使用計算機

No Calculator is Allowed!

(1) (a) (10 pts) Find an explicit value of $\epsilon > 0$ such that for every $x \in [0,1]$

$$|\sqrt{x} - \sqrt{x + \epsilon}| < \frac{1}{200}.$$

(b) (10 pts) Find an explicit integer N such that there exists a polynomial P of degree at most N such that for every $x \in [0,1]$

$$|\sqrt{x} - P(x)| < \frac{1}{100}$$

Hint: You can use the expansion of $\sqrt{x+\epsilon}$ in power series in (x-1).

- (2) (10 pts) Let $f:[0,1] \to \mathbf{R}$ be monotone increasing, i.e. if c < d implies $f(c) \le f(d)$. Use the definition of the Riemann integral (comparing upper and lower sums relative to a partition of [0,1]) to prove that $\int_0^1 f(x)dx$ exists.
- (3) (a) (10 pts) Evaluate $\int_0^2 \int_{y^2}^4 y \cos(x^2) dx dy$ (b) (10 pts) Let F be a vector field $F = \langle x^3, y^3, z^3 \rangle$ and Ω be the solid region in \mathbf{R}^3 bounded by $x^2 + y^2 \geq z^2, x^2 + y^2 + z^2 \leq 9, y \geq |x|$. Evaluate $\int \int \int_{\Omega} (x^2 + y^2 + z^2) dV$ and find the the flux of F through the boundary surface of Ω , oriented outwards (i.e. $\int \int_{\partial\Omega} F \cdot n dS$).
- (4) (10 pts) Among all planes that are tangent to the surface $xy^2z^2=1$, find the ones that are farthest from the origin.
- (5) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and $b_n = \frac{1}{n^3} (\sum_{k=1}^n k^2 a_k)$. (a) (10 pts) Prove or disprove: If $\{a_n\}_{n=1}^{\infty}$ converges then $\{b_n\}_{n=1}^{\infty}$ converges. (b) (10 pts) Prove or disprove: If $\{b_n\}_{n=1}^{\infty}$ converges then $\{a_n\}_{n=1}^{\infty}$ converges.
- (6) (a) (10 pts) Find domain of convergence of

$$\sum_{n=1}^{\infty} \frac{(n+x)^n}{n^{n+x}}.$$

(b) (10 pts) Does the series

$$\sum_{n=1}^{\infty} e^{-\frac{x}{n}} \frac{(-1)^n}{n}$$

converge uniformly on $[0, \infty)$. Prove or disprove.