題號: 42

科目:普通化學(C)

共 4 頁之第

※ 注意:選擇題請於答案卷之「選擇題作答區」依序作答。

- $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.626 \times 10^{-34} \text{ J-s}$; $R_H = 1.097 \times 10^7 \text{ m}^{-1}$; F = 96500 C/mol
- Gas constant: R = 8.314 J/mol-K = 0.0821 L-atm/mol-K
- 週期表:第4頁

I. 選擇題 (78%, 選擇題每題答案可能 1 至多個, 全部選對始得題分 3 分)

- 1. Choose the correct conversions.
 - (A) $32^{\circ}F = 273.15 \text{ K}$ (B) 0.12 g = 120 mg (C) 28 torr = 28 cmHg (D) $15 \text{ nm} = 1.5 \times 10^{-9} \text{ m}$
- 2. For the ion ${}^{19}_{9}F^{-}$, which of the following statements is true?
 - (A) the atomic number is 9
- (B) the number of protons is 9
- (C) the number of electrons is 9 (D) the number of neutrons is 9.
- 3. Common commercial ammonia water, NH₃(aq), is 28% by mass and has density 0.90 g/cm³. Calculate the molarity (mol/L) of the base.
 - (A) 1.6 M (B) 12 M (C) 15 M (D) 16 M (E) none of the above
- 4. If the human eye has an osmotic pressure of 8.00 atm at 25°C, what concentration of solute particles in water will provide an isotonic eye drop solution?

 - (A) 0.00323 M (B) 0.0385 M (C) 0.327 M
- (D) 3.90 M
- Separate samples of an unknown salt are treated with dilute solutions of HCl, H₂SO₄, and NaOH. A precipitate forms in all three cases. Which of the following could be the cation of the unknown salt? (A) Ba^{2+} (B) Ca^{2+} (C) Al^{3+} (D) Pb^{2+}
- In alcohol fermentation, yeast converts glucose to ethanol and carbon dioxide:

 $C_6H_{12}O_6(s) \rightarrow 2C_2H_5OH(1) + 2CO_2(g)$

If 6.0 g of glucose are reacted and 0.70 L of CO₂ gas is collected at 298 K and 1 atm, what is the percent yield of the reaction?

- (A) 43% (B) 55% (C) 85% (D) 94%
- 7. The rate of effusion of a particular gas was measured to be 24 mL/min. Under the same conditions, the rate of effusion of pure methane gas (CH₄) is 48 mL/min. What is the molar mass of the unknown
 - (A) 4.0 (B) 8.0 (C) 32 (D) 64 (E) can't be determined
- 8. According to the electron configurations, predict which of the following is paramagnetic?
 - (A) Ca atom (B) Al^{3+} ion
- (C) Zn atom (D) Ti atom
- 9. Which of the following ranking is correct?
 - (A) Atomic radius: $N < P < As_i$
 - (B) Ionic radius: $Al^{3+} < Mg^{2+} < Na^{+}$
 - (C) First ionization energy: Na < Mg < O < F
 - (D) Electronegativity: N < O < F
- 10. From the following sets of quantum numbers (n, l, m_l, m_s) , identify the set that is correct.
 - (A) (3, 0, 0, 0) (B) (3, 1, 0, 1/2) (C) (4, 4, 1, 1/2) (D) (2, 1, -1, -1/2)
- 11. Which of the following molecules have dipole moment?
 - (A) NF_3 (B) SO_2 (C) CIF_3 (D) SF_6

題號: 42

科目:普通化學(C)

題號: 42

共 4 頁之第 2 頁

- 12. For the following molecules, choose the one with the largest bond angle?

 (A) CH₄ (B) H₂CO (C) H₂O (D) I₃
- 13. According to the Lewis structure of formic acid, HCOOH, that is the irritant released in an ant bite, choose the correct answers.
 - (A) There are four lone pair electrons in the Lewis structure.
 - (B) There are three σ bonds and one π bond in the molecule.
 - (C) The hybrid orbitals used by the central atom C is sp².
 - (D) The hybrid orbitals used by the central atom O is sp³.
- 14. Niobium oxide crystallizes as the following cubic unit cell.
 - (A) There are six niobium atoms per unit cell.
 - (B) There are three oxygen atoms per unit cell.
 - (C) The empirical formula of niobium oxide is Ni₂O.
 - (D) This is a covalent network solid.

16. For the synthesis of ammonia at 298 K, $N_2(g) + 3H_2(g) \implies 2NH_3(g)$, the equilibrium constant $K = 5.8 \times 10^5$. What is the value of K for the following reaction at 298 K? $NH_3(g) \implies 1/2N_2(g) + 3/2H_2(g)$

(A)
$$1.7 \times 10^{-6}$$
 (B) 1.3×10^{-3} (C) 7.6×10^{2} (D) 5.8×10^{5}

- 17. For the polyvinylchloride (PVC) with the following structure
 - (A) CH₂CHCl is the monomer.
 - (B) This is a condensation polymer.
 - (C) During the process of polymerization, hydrogen chloride is produced.
 - an (D) This is a homopolymer.
- 18. Which of the following substances show hydrogen bonding?
 - (A) butanol (B) ethyl acetate (C) propanone (D) methylamine
- 19. The following reaction was studied by the method of initial rates at certain temperature:

CC	$0 + Cl_2 \rightarrow COCl$	+ Cl 11 10 (ORIW 1919)
[CO] _o (M)	$[Cl_2]_o(M)$	Initial rate (M/s)
1.00×10^{2}	1.00×10^{2}	6.60×10^{3}
2.00×10^{2}	1.00×10^{2}	1.32×10^4
1.00×10^{2}	2.00×10^{2}	2.64×10^4

- (A) The rate law is rate = $k[CO][Cl_2]$.
- (B) The overall order of the reaction is 3.
- (C) The value of the rate constant k is 6.6×10^{-1} .
- (D) If $[CO]_0 = 3.00 \times 10^2$ M, $[Cl_2]_0 = 3.00 \times 10^2$ M, the initial rate would be 1.78×10^5 .

(B) logic radius: Alt - Mg2 - Ka

題號: 42

科目:普通化學(C)

題號: 42

共 4頁之第 3 頁

20. The thermal decomposition of phosphine (PH₃) into phosphorus and molecular hydrogen is a

first-order reaction: $4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$

The half-life of the reaction is 35.0 s at 680°C. If the initial concentration of PH₃ is 0.100 M, calculate the time required for 95% of the phosphine to decompose.

- (A) 2.59 s (B) 35 s (C) 140 s (D) 151 s (E) None of the above.
- 21. For the decomposition reaction in a closed container that is at equilibrium:

$$BaCO_3(s) \implies BaO(s) + CO_2(g) \quad \Delta H = +266 \text{ kJ/mol}$$

which of the following actions would favor shifting the equilibrium position to form more CO2 gas?

- (A) Add some BaCO₃(s) to the system.
- (B) Add some BaO(s) to the system.
- (C) Raise the temperature.
- (D) Add a catalyst to the reaction mixture.
- 22. For a voltaic cell that uses Ag/Ag⁺ and Mg/Mg²⁺ half-cell reactions under standard conditions and 298 K:

$$Ag^{+}(aq, 1.0 \text{ M}) + e^{-} \rightarrow Ag(s)$$
 $E^{0} = +0.80 \text{ V}$
 $Mg^{2+}(aq, 1.0 \text{ M}) + 2e^{-} \rightarrow Mg(s)$ $E^{0} = -2.37 \text{ V}$

- (A) The line notation for the electrochemical cell is $Mg(s) \mid Mg^{2+}(aq) \mid Ag^{+}(aq) \mid Ag(s)$.
- (B) Mg(s) is the anode.
- (C) The standard emf, E^{0}_{cell} , of the cell at 298 K is 3.97 V.
- (D) When the reaction reaches equilibrium, the value of $E_{cell} = 0$.
- 23. A voltaic cell utilizes the following reaction:

$$Al(s) + 3Ag^{+}(aq) \rightarrow Al^{3+}(aq) + 3Ag(s)$$

Which of the following process will increase the electromotive force, E_{cell} , of the cell?

- (A) Some AgNO₃ is added to the cathode compartment.
- (B) The size of the aluminum electrode is increased.
- (C) Additional water is added to the anode compartment.
- (D) Excess ammonia water is added to the cathode compartment.
- 24. For the coordination compound K₃[Co(ox)₃], which of the following statements are true?

The "ox" stands for oxalate ion, (COO)₂²-.

- (A) The oxidation number of Co is +3.
- (B) The coordination number of Co is 3.
- (C) The oxalate ion is a chelating agent.
- (D) The geometry of $[Co(ox)_3]^{3-}$ is trigonal planar.
- 25. Which of the following nuclide is radioactive?
 - (A) $^{222}_{86}$ Rn (B) $^{235}_{92}$ U (C) $^{90}_{38}$ Sr (D) $^{60}_{27}$ Co
- 26. Give the missing particle in the nuclear reaction: ${}^{131}_{53}I \rightarrow ? + {}^{131}_{54}Xe$
 - (A) $_{1}^{0}$ e (B) $_{1}^{0}$ e (C) $_{0}^{1}$ n (D) $_{2}^{4}$ He

題號: 42

科目:普通化學(C)

題號: 42

共 4 頁之第 4 頁

※注意:請於試卷上「非選擇題作答區」標明題號並依序作答。

- Ⅱ. 填充題 (12%, 僅需填寫答案無須計算過程)
- 27. For 0.10 M CH₃COOH(aq), the pH value = (27) . $K_a = 1.0 \times 10^{-5}$.
- 28. For 1.0 M NaF(aq), the pH value = (28) . K_a for HF(aq) = 1.0×10^{-4} .
- 29. For a solution containing 0.10 M C₆H₅COOH and 0.10 M C₆H₅COONa, the pH value = (29). K_a for C₆H₅COOH = 1.0×10^{-5} .
- 30. The solubility of AgSCN(s) in a solution containing 1.0 M KSCN is s (mol/L), s = (30). K_{sp} for AgSCN = 1.0×10^{-12} .

III. 計算問答題 (10%)

- 31. For the Haber process at 25° C, $N_2(g) + 3H_2(g) \implies 2NH_3(g)$
 - (A) Calculate ΔH^0 , ΔS^0 , and ΔG^0 for the reaction using the following data.
 - (B) Calculate the equilibrium constant, K_{eq} , for the reaction at 25°C.
 - (C) Is the reaction spontaneous at standard states and 25°C?
 - (D) How is the rate of the reaction, fast or slow?

298 K	N ₂ (g)	$H_2(g)$	NH ₃ (g)
ΔH_f^o (kJ/mol)	-	-	-46
S° (J/mol.K)	191	130	192
ΔG _f ° (kJ/mol)	-	-	-16.5

1																	18
<u>IA</u>	_																8A
H H	2											13	14	15	16	17	He He
1.008	2A											3A	4A.	5A	6A	7A	4.003
Li Li	4											5 B	ć	7,	8	2	10
6.941	Be 9.012											10.81	12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12	3	4	5	6	7	8	9	10	11	12	13 A1	14	15	16	17	18
Na 22.99	Mg 24.31	3 B	4B	5B	6B	7B	8B	8B	8 B	1B	2B	A1 26.98	Si 28.09	P 30.97	S 32.07	C1 35.45	Ar 39.95
	20	21	22	23 V	24	25	26	27	28	29	30	31	17 J Y 1	-33	34	35	
19 K	Ca	Sc	22 Ti	•	Cr	Mn	Fe	Co	Ni	29 Cu	Zn	Ga	Go	As	Se	Br	36 Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	31	52 Te	53	54
Rb	Sr	Y.	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Le	126.0	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 An	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	404.4	114	203.0	116	(410)	118
Fr	Ra	tÁc	Rf	Ďб	Sg	Bh	Ĥs	Mt	Ds	Rg	Uub	1	Uuq		Unh		Üuo
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(268)	(271)	(280)							

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	P 1	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
†Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Blk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

試題隨卷繳回