國立臺灣大學 110 學年度碩士班招生考試試題

題號: 55 科目:微積分(A)

節次:

題號: 55

2 頁之第

## ※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號。

Any device with computer algebra system is prohibited during the exam. Solve the following problems. You need to write down your reasoning.

- 1. Suppose that f(x) satisfies the equation  $f(x+y) = f(x) + f(y) + xy x^2y xy^2$  for all  $x, y \in R$  and  $\lim_{x \to 0} \frac{f(x)}{x} = 2$ .
  - (a) (6 pts) Find f(0) and f'(x).
  - (b) (6 pts) Sketch the graph of f(x), indicating intervals of increasing/decreasing, and concavity.
- 2. A man runs twice as fast as he swims. He is at point A on the edge of a circular pool with radius 20 meters and he wants to get to the diametrically opposite point B as quickly as possible. He can run around the edge to a point C and then swim directly from C to B.
  - (a) (10 pts) How should he choose the point C to minimize the total time?
  - (b) (6 pts) If he runs m times as fast as he swims, how will his best strategy be modified as m varies  $(m \ge 1)$ ?
- 3. Investigate the integral  $\int_0^1 \frac{\ln x}{1+x^2} dx$ .
  - (a) (7 pts) Show that the improper integral  $\int_0^1 \frac{\ln x}{1+x^2} dx$  converges. Show that

$$\int_0^1 \frac{\ln x}{1+x^2} dx = -\int_1^\infty \frac{\ln x}{1+x^2} dx.$$

- (b) (4 pts) Write  $\frac{1}{1+x^2}$  as the sum of a power series  $\sum a_n x^n$ .
- (c) (6 pts) Write  $\int_0^1 \frac{\ln x}{1+x^2} dx = \int_0^1 (\sum a_n x^n) \ln x \, dx$  as the sum of a series. Thus, we can use its partial sums to estimate the integral.
- 4. (10 pts) Find the twice differentiable function f(x) such that

$$f'(x) = \int_0^x \sqrt{1 + (f'(u))^2} du, \ f(0) = 2.$$

- 5. (a) (5 pts) Let  $f(x, y, z) = \int_{-\infty}^{\sqrt{y}} \sin(t^2) dt$ . Find  $\nabla f$ , the gradient of f.
  - (b) (5 pts)  $f(x,y) = \frac{\sin(xy^2)}{x^2 + y^2}$  for  $(x,y) \neq (0,0)$  and f(0,0) = 0. Compute the directional derivative of f along  $\mathbf{u} = (\cos \theta, \sin \theta)$  at (0, 0).
- 6. (10 pts) Find the critical points of f(x,y), where z=f(x,y) satisfies the equation  $yz+x\ln y=z^2$ . Are these critical points local maximum, local minimum, or saddle points?

題號: 55

國立臺灣大學 110 學年度碩士班招生考試試題

科目:微積分(A)

共 2 頁之第 2 頁

節次: 4

7. Evaluate the following multiple integrals.

(a) (7 pts) 
$$\int_0^{\frac{\sqrt{3}}{2}} \int_{\sqrt{1-y^2}}^{\sqrt{4-y^2}} e^{x^2+y^2} dxdy + \int_{\frac{\sqrt{3}}{2}}^{\sqrt{3}} \int_{\frac{y}{\sqrt{3}}}^{\sqrt{4-y^2}} e^{x^2+y^2} dxdy$$

(b) (8 pts) 
$$\iiint_E \frac{1}{1+z} dV \text{, where } E = \{(x,y,z) | x^2 + y^2 + z^2 \leq 1, x \geq 0, y \geq 0, z \geq 0\}.$$

8. (10 pts) Let S be the part of the cylinder  $x^2 + y^2 = 2y$  that lies in the sphere  $x^2 + y^2 + z^2 = 4$  and inside the first quadrant. Compute  $\iint_S z \, dS$ .