題號: 51

共 1 頁之第 1 頁

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

- 1. Classify groups of order n up to isomorphism in the following two cases.
 - (a) [5%] $n = 2021 = 43 \times 47$.
 - (b) [15%] $n = 2020 = 4 \times 5 \times 101$.
- 2. [20%] Let A be a commutative ring with identity, and $\mathfrak m$ a maximal ideal. Show the following statements are equivalent:
 - (i) A has only one maximal ideal.
 - (ii) $A \setminus \mathfrak{m}$ consists of units in A.
 - (iii) If a, b are not unit, then a + b is not a unit.
- 3. [20%] Prove the following simple form of the structure theorem for finitely generated modules over a principal ideal domain (so you can *not* apply the structure theorem directly). Let A be a principal ideal domain and M a 2×2 matrix whose entries are in A. Show that there exist invertible matrices P, Q with entries in A and $\alpha, \beta \in A$ with $\alpha \mid \beta$ such that $PMQ = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$.
- 4. (a) [5%] For a positive integer n, let $\phi(n)$ denote the cardinality of invertible elements in the ring $\mathbb{Z}/n\mathbb{Z}$. Show that

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right)$$

where p runs through all primes dividing n.

- (b) [10%] Determine the cardinality of invertible 2×2 matrices with coefficients in $\mathbb{Z}/n\mathbb{Z}$ in terms of $\phi(n)$.
- (c) [5%] Determine the cardinality of invertible 2×2 matrices with coefficients in $\mathbb{Z}/n\mathbb{Z}$ whose determinants are equal to 1 in terms of $\phi(n)$.
- 5. Let n be an integer and $n \ge 2$. Following the steps below to show that $x^n x 1$ is irreducible over \mathbb{Q} . (You can provide another proof and get the credits.)

For a polynomial $f(x) = a_n x^n + \cdots + a_k x^k + \cdots + a_0 \in \mathbb{Q}[x]$ of degree n, let $\tilde{f}(x) = x^n f(1/x) = a_0 x^n + \cdots + a_k x^{n-k} + \cdots + a_n$.

- (a) [4%] Let $f(x) \in \mathbb{Z}[x]$ be a monic with $f(0) = \pm 1$ such that f(x), $\tilde{f}(x)$ have no common root in \mathbb{C} . Suppose f(x) = g(x)h(x) for non-constant g(x), $h(x) \in \mathbb{Z}[x]$. Show that there exists a monic $k(x) \in \mathbb{Z}[x]$ with $k \neq \pm f$, $\pm \tilde{f}$ such that $f\tilde{f} = k\tilde{k}$.
- (b) [8%] Show that for $n \ge 2$ and $f(x) = x^n x 1$, the two polynomials f, \tilde{f} have no root in common in \mathbb{C} .
- (c) [8%] Let $f(x) = x^n x 1$ for $n \ge 2$. Show that if a monic $k(x) \in \mathbb{Z}[x]$ satisfies $f\tilde{f} = k\tilde{k}$, then k = f or $-\tilde{f}$.