題號: 373

國立臺灣大學 110 學年度碩士班招生考試試題

科目:微積分(C)

節次:

373 共 乙 頁之第

頁

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

- ※ Please show the detailed calculation process for the questions whenever necessary.
- ※ If the answers are with decimal numbers, please round to the second decimal place, e.g., 99.37 or 2.43%.
- 1. (10%) Find k such that $f(x) = kx^2$ is a probability density function over the interval [2, 5]. Then write the probability density function.
- 2. (10%) Find the area of the region E bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 3. (10%) Solve $\frac{dy}{dx} + \frac{y}{x} = e^{2x}$.
- 4. (10%) Suppose that the real-valued function $f: I \to R$ is integrable, where $I = [a, b] \times [c, d]$ is a rectangle in the plane R^2 . To use Fubini's Theorem to calculate the integral $\int_I f$, what conditions are required? State and explain Fubini's Theorem in detail.
- 5. (10%) What are metric spaces? When is a mapping between two metric spaces called continuous?
- 6. (10%) In February 2021, an automobile manufacturer sells cars in America, Europe, and Asia, charging a different price in each of the three markets. The price function for cars sold in America is p = 20 - 0.2x (for $0 \le x \le 100$), the price function for cars sold in Europe is q = 16 - 0.1y (for $0 \le y \le 160$), and the price function for cars sold in Asia is r = 12 - 0.1z (for $0 \le z \le 120$), all in thousands of dollars, where x, y, and z are the numbers of cars sold in America, Europe, and Asia, respectively. The company's production cost function is C = 22 + 4(x + y + z) thousand dollars.
 - (a) (2%) Find the company's profit function P(x, y, z), which should be the sum of the revenues from different markets minus production costs, and each revenue is price times quantity.
 - (b) (8%) Suppose the automobile manufacturer's productivity capacity is 100 cars in this month. How many cars should be sold in each market to maximize profit and what is the maximized profit?
- 7. (10%) A company's marginal cost function is $MC(x) = xe^{-x/2}$ and fixed costs are 200, where x is a nonnegative real number that denotes the amount of units produced. Find its cost as a function of x. (Hint: Marginal cost is the cost added by producing one additional unit of a product or service.)
- 8. (30%) Consider a power call or put option with the payoff at the maturity T as

$$C_T = \max(S_T^i - X^i, 0)$$
 and $P_T = \max(X^i - S_T^i, 0)$,

respectively, where S_t is the stock price at time t, i is a positive-integer exponent, and X^i denotes the strike price. Under the Black-Scholes framework, their respective value functions today (t = 0) are

$$C_0 = \prod S_0^i N(d_i) - \exp(-rT)X^i N(d_0),$$

$$P_0 = \exp(-rT) X^i N(-d_0) - \prod S_0^i N(-d_i),$$

 $\Pi = \Pi(i,r,\sigma,T) = \exp(-rT + irT + (i^2 - i)\sigma^2T/2) \quad , \quad d_i = \frac{\ln\left(\frac{S_0}{X}\right) + \left(r - \frac{\sigma^2}{2}\right)T + i\sigma^2T}{\sigma\sqrt{T}} \quad , \quad d_0 = \frac{\ln\left(\frac{S_0}{X}\right) + \left(r - \frac{\sigma^2}{2}\right)T + i\sigma^2T}{\sigma\sqrt{T}} \quad , \quad d_0 = \frac{\ln\left(\frac{S_0}{X}\right) + \left(r - \frac{\sigma^2}{2}\right)T + i\sigma^2T}{\sigma\sqrt{T}} \quad , \quad d_0 = \frac{\ln\left(\frac{S_0}{X}\right) + \left(r - \frac{\sigma^2}{2}\right)T + i\sigma^2T}{\sigma\sqrt{T}} \quad , \quad d_0 = \frac{\ln\left(\frac{S_0}{X}\right) + \left(r - \frac{\sigma^2}{2}\right)T + i\sigma^2T}{\sigma\sqrt{T}} \quad .$

題號: 373 國立臺灣大學 110 學年度碩士班招生考試試題

科目:微積分(C) 節次: 7

題號: 373

共) 頁之第 2 頁

 $\frac{\ln(\frac{S_0}{X}) + (r - \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$, r is the risk-free interest rate, σ is the stock price volatility, and $N(\cdot)$ is the cumulative distribution function of the standard normal distribution defined as

$$N(d) = \int_{-\infty}^{d} n(x) dx = \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx,$$

where $n(\cdot)$ is the probability density function of the standard normal distribution.

- (a) (10%) Prove that $\Pi S_0^i n(d_i) = \exp(-rT)X^i n(d_0)$.
- (b) (8%) Derive and express $\frac{\partial C_0}{\partial S_0}$ and $\frac{\partial P_0}{\partial S_0}$ as AN(B) and CN(D), respectively. What are A, B, C, and D?
- (c) (8%) Derive and express $\frac{\partial^2 C_0}{\partial S_0^2}$ and $\frac{\partial^2 P_0}{\partial S_0^2}$ as EN(F) + Gn(H) and IN(J) + Kn(L), respectively. What are E, F, G, H, I, J, K, and L?
- (d) (4%) In what condition does $\frac{\partial^2 C_0}{\partial S_0^2}$ equal $\frac{\partial^2 P_0}{\partial S_0^2}$?