國立臺灣大學 110 學年度碩士班招生考試試題

題號: 337 科目:自動控制

題號: 337

節次: 2

共 2 頁之第 / 頁

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

1 A state diagram of a control system is given in Fig. A, where a and b are constants (1) Write the dynamic equation of the system. 【 計分:3 分】 (2) Determine the conditions on a and b so that the system is completely controllable and observable. 【 計分:4 分】 (3) Let a=4 and b=3, (i) find the transfer function Y(s)/U(s) 【 計分:3 分】 and (ii) determine the state-transition matrix $\phi(t)$ of the system. 【 計分:10 分】

- 2. A unity feedback control system is shown in Fig. B. (1) Determine the range of gain K for stability. 【 計分:3 分】(2) Sketch the root loci of the control system. 【 計分:6分】(3) Verify that the formulas of describing three root-locus branches are straight lines. 【 計分:6分】
- 3. The voltage equation of a dc motor is written as

$$e_a(t) = R_a i_a + L_a \frac{di_a(t)}{dt} + K_b \omega_m(t)$$

where $e_a(t)$ is the applied voltage; $i_a(t)$, the armature current; R_a , the armature resistance; L_a , the armature inductance; K_b , the back-emf constant; $\omega_m(t)$, the motor velocity; and $\omega_r(t)$, the reference input voltage. Taking the Laplace transform on both sides of the voltage equation, with zero initial conditions and solving for $\Omega_m(s)$, we get

$$\Omega_m(s) = \frac{E_a(s) - (R_a + sL_a)I_a(s)}{K_b}$$

which shows that the velocity information can be generated by feeding back the armature voltage and current. The block diagram in Fig. C shows a dc-motor system, with voltage and current feedbacks, for speed control.

- (1) Find the transfer functions $\frac{\Omega_m(s)}{\Omega_r(s)}\Big|_{T_r=0}$ and $\frac{\Omega_m(s)}{T_L(s)}\Big|_{\Omega_r=0}$, respectively. [\$\frac{1}{2} \frac{1}{2} \frac{1}{2}
- (2) Let K_1 be a very high gain amplifier. Show that when $H_i(s)/H_e(s) = -(R_a + L_a s)$, the motor velocity $\omega_m(t)$ is totally independent of the load-disturbance torque T_L ($\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$
- (3) Find the transfer function between $\Omega_m(s)$ and $\Omega_r(s)$ ($T_L = 0$) when $H_i(s)$ and $H_e(s)$ are selected as in part (2). 【計分:6分】

國立臺灣大學 110 學年度碩士班招生考試試題

題號: 337 科目:自動控制

科目:自動控制題號: 337節次: 2共 2-頁之第 2 頁

4. Fig. D shows a single-link robot driven by a DC servomotor. To amplify the torque τ_m generated by the motor, a gear transmission with gear ratio n (i.e. n= teeth number of Gear 2 / teeth number of Gear 1) is used between the motor shaft and the robot link. Let I_m be the moment of inertia of the motor shaft and Gear 1 combination, and I_L be the moment of inertia of the robot link together with Gear 2. A rotational damper of coefficient b_m is placed at the end of Gear 1 to model the possible viscous friction.

- (a) What is the relation between the motor speed ω_m and the link speed ω_L , and determine the equivalent moment of inertia referred to the motor shaft. (5%)
- (b) Using τ_m as the control input and the rotation angle (say, θ) of the link as output, obtain the transfer function describing the dynamic relation between the torque τ_m and the output angle θ . (5%)
- (c) If $I_m = 0.01 Kg \cdot m^2$, $I_L = 1 Kg \cdot m^2$, n = 10, $b_m = 0.001 Kg \cdot m^2/s$, determine the system type and find the impulse response and step response of the single-link robot respectively (15%)

Fig. D

- 5. Consider a second order system G(s) (in Fig. E), of which the nominal value of the parameter A=0.1. Please design a feedforward gain K and PD controller so that the response of the closed loop system can satisfy the both specifications listed below: 【计分:15分】
 - (1) rising time ≤ 0.1 sec, overshoot $\leq 10\%$, steady state error $\leq 5\%$ for the unit step reference command r
 - (2) disturbance rejection for the unit step w to 5% within 0.1 sec.
 - If the parameter A varies between 0.05 \sim 0.15, can you design a controller so that the closed loop system can still achieve the above specifications? $\{ \} : 10 \}$

Fig. E

試題隨卷繳回