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1. (50%) Lymphangions (& H]), functional units of a lymph vessel (HiE2E) that lie between two semilunar values (i), are
muscular and capable of contracting themself one by one to propel the lymph (HE2F) forward and increase the fluid pressure
(figure 1). A lymph vessel now is modeled by a micro-tube with a deformable wall as shown in figure 2. The micro-tube has a
fixed length L and a radius R, when the wall is undeformed. We assume that a lymph vessel is very thin, Le., Ry « L. We
model the operations of lymphangions as a wall deformation in a form of traveling wave, i.e, 4R = AR(kz — wt), where z is
the streamwise coordinate, k and w are wavenumber and angular velocity of the traveling wave, whose traveling velocity is
¢ = w/k. Thus, the deformable wall is described by an axisymmetric surface at r = R(z,t) = Ry + 4R(kz ~ wt). Consider the
flow of lymph in the micro-channel is incompressible, axisymmetric and without swirling. The lymph is assumed to have
constant density p and dynamics viscosity u.
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Figure 1. Propagation of lymph. Figure 2. The schematics of the micro-tube.

The following incompressible axisymmetric no-swirling Navier-Stokes equations in the cylindrical coordinate will be helpful:
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where p is the pressure and ©, and u, are the radial and streamwise components of velocity.

(1) (5%) Let the scales of the streamwise and radial velocities of the lymph flow be U and W, respectively. Let the streamwise and radial
positions in the lymph flow be scaled by Rg and L, respectively. From scale analysis of the continuity equation, what can you tell about the
magnitudes of U and W?

(2) (5%) From scale analysis of the momentum equation in the 2 direction, under what condition can the momentum equation in the
z direction be reduced to the equation of Poiseuille flow? What should the scale of pressure be?

(3) (5%) From scale analysis of the momentum equaiion in the 7 direction, what conclusion can be drawn about the pressure
distribution with the results from part (b)?

(4) (5%) Consider a control volume in the micro-tube that has a cross-sectional area A(z,t) = 7R?(z,t) and an infinitesimal length

. d R(z, .
dz. From control volume analysis, show that :—g + 5—? =0, where Q(z,t) = [ o ¢ t)uz(Zm‘)dr is the volume flow rate.

(5) (10%) In the case of part (b), write down the boundary conditions of the Poiseuille flow in the micro-tube and solve for
U, (7, 2,t). Compute Q(z,t) by integrating u,(r,z,t) directly.

(6) (10%) Since R(z,t) isina form of a traveling wave, A(z,t) and Q(z,t) are too in a form of traveling wave. From the results
in part (d) show that Q(z,t) = cA(z,t) + Qo(t) . Together with the results from part (e), derive an expression of the pressure

gradient in the z direction in terms of @ (£), Ry, 4R, ¢,and p.

(7) (10%) Consider the deformation of the wall is small, i.e., AR < Ry. Perform the Taylor expansion of the pressure gradient
about AR = 0 to the first order and show that it is possible to obtain a pressure rise when there is a traveling wave propagating

on the deformable wall.
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2. (50%) A solid sphere of radius R and density ps is immersed in the center of a deep tank of incompressible fluid of viscosity n
and density p. At time zero, the sphere is suddenly released and falls in a straight line under the action of gravity. The sphere
velocity u(t) increases from zero and reaches a steadily falling terminal velocity U. The quasi-steady drag Fp acting on the

sphere may be calculated by reading Cp-Re plot shown in Figure 3 where Cp is the drag coefficient and Re=2RpU/p is the

particle Reynolds number,
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Figure 3

(1) (10%) Formulate a general dynamic equation to describe the sphere transient unsteady motion u(t) from time zero with a

proper initial condition. Explain the physical meaning of every term in your equation.

2) (5%) If the sphere motion falls in the low-Re flow regime (Regime A), C, the drag coefficient can be described by Cp=24/Re,

Determine the sphere terminal velocity U.

3) (7%) Based on the Navier-Stokes equation, use scaling arguments to explain why the total drag in the low-Re regime (Regime
A) always follows the same relation that logCp~ -log(Re), or equivalently, Fp~ pRU.

4) (8%) Perform dimension analysis to find all the relevant non-dimensional flow variables with one that involves the transient
timescale T as a dimensionless time scale, T".

(5} (5%) Now, we consider the motion of a spherical liquid droplet of identical radius R, density pL (p<pr<ps) and viscosity pr.
that also falls at its terminal velocity Uy in the low-Re regime. Do you expect a greater or a lower Cp than that of the solid
sphere if the liquid droplet falls at the same speed as the solid sphere? Why?

6) (5%) Compare the terminal velocity of the spherical liquid droplet and the solid sphere. Under what condition they may fall
at the same speed?

(7) (5% If the sphere now moves in Regime B, the experienced Cp decays with Re at a slower rate than the decay rate in

Regime A. Can you explain it use the flow process?

(8) (5%) Use flow process to explain why Cp remains nearly constant in Regime C. What happens when there is a sudden drop

of Cp in Regimes D and explain its flow process.
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