國立臺灣大學 109 學年度碩士班招生考試試題

科目:電磁學及電磁波

節次: 7

題號: 416

※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

1. (20 points) An infinite planar current sheet, \overline{J}_s , is placed at the interface (at z=0) of two perfect dielectric materials, where \overline{J}_s is a time-varying surface current density by $\overline{J}_s = 0.2\cos(8\pi \times 10^8 t)\hat{x} \ (A/m)$.

The values of permittivity in these two regions are given by $\varepsilon = 4\varepsilon_0$ and $\varepsilon = 9\varepsilon_0$ for z < 0 and z > 0, respectively. (Both cases assume $\mu = \mu_0$)

- (1) (4 points) Find the intrinsic impedances, η_1 and η_2 , in these two regions of z < 0 and z > 0, respectively. Also find the corresponding phase constants, β_1 and β_2 . (Note that the speed of light is 3×10^8 m/s)
- (2) (8 points) Find the electric field $\overline{E}(z,t)$ and the magnetic field $\overline{H}(z,t)$ in both regions z > 0 and z < 0.
- (3) (4points) Specify the boundary conditions for $\overline{E}(z,t)$ and $\overline{H}(z,t)$, respectively at z=0 when the field points in the two regions go close to the interface at z=0.
- (4) (4 points) Please show if the time-average power densities in these two regions are equal?
- 2. (15 points) Consider two parallel infinite plane sheets held a distance d apart (the material inside is air). The surface charge density is ρ_{s0} at z=0, and is $-\rho_{s0}$ at z=d.
- (1) (6 points) Find the electric field everywhere. Calculate the voltage between the two plane sheets. Find the capacitance per area.
- (2) (6 points) Now the air is replaced by a dielectric material, $\varepsilon = 2.25\varepsilon_0$. Repeat the computations in (1).
- (3) (3 points) Find the polarization current density, \overline{J}_p .
- 3. (15 points) Consider an electric field propagating radially outward in free space, which is expressed in spherical coordinates by

$$\bar{E} = E_0 \frac{\sin \theta}{r} \cos \left[\omega \left(t - r \sqrt{\mu_0 \varepsilon_0} \right) \right] \hat{a}_{\theta} \quad \text{(V/m)},$$

where (r,θ,ϕ) is the variables of spherical coordinate system with $(\hat{a}_r,\hat{a}_\theta,\hat{a}_\phi)$ being the unit vectors of their axes. We assume that \bar{E} , \bar{H} and their propagation direction follow the rule of plane wave.

- (a) (5 points) Please find the propagation direction, and afterward determine the magnetic field, \overline{H} .
- (b) (5 points) Find the instantaneous power density ($\bar{P} = \bar{E} \times \bar{H}$). Specify the direction of power propagation.
 - (c) (5 points) Integrate the power density in (b) through a <u>spherical</u> surface with a radius r to find the power $(\Phi \bar{P} \cdot d\bar{s})$. Also calculate the <u>time average</u> power. (Note: $d\bar{s} = (r^2 \sin \theta d\theta d\phi)\hat{a}_r$)
 - 4. (15 points) Consider a transmission line with characteristic impedance Z_0 , propagation constant β , and length l. It is connected to a short-circuited load at one end.
 - (a) (5 points) Show that the input impedance looking into the transmission line (from the other end) can be expressed as $Z_{in} = jZ_0 \tan \beta l$
 - (b) (5 points) Assume that the short-circuited load is replaced by an arbitrary load Z_L , as shown in

科目:電磁學及電磁波

類號: 416

み 頁之第 み

Figure 1, please show that the input impedance looking into the transmission line can be expressed as $Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_1 \tan \beta l}$

(c) (5 points) Let Z(d) be the line impedance at location d looking towards the load. Show that $Z(d) \cdot Z\left(d + \frac{\lambda}{4}\right) = Z_0^2$. (Hint: use $Z(d) = Z_0 \frac{1 + \Gamma(d)}{1 - \Gamma(d)}$, where $\Gamma(d)$ is the reflection coefficient at location d)

- 5. (15 points) Figure 2 shows a plane wave of TE polarization incident upon a planar interface at x = 0, the electric field is $\overline{E}_i(\overline{r}) = \hat{y}E_0e^{jk_{1x}x-jk_zz}$, the reflected electric field is $\overline{E}_r(\overline{r}) = \hat{y}RE_0e^{-jk_{1x}x-jk_zz}$, and the transmitted electric field is $\overline{E}_i(\overline{r}) = \hat{y}TE_0e^{jk_2x^2-jk_2z}$, where R is the reflection coefficient and T is the transmission coefficient.
- (a) (5 points) Derive the incident, reflected and transmitted magnetic fields by using $\overline{H}(\overline{r}) = \frac{-1}{i\omega\mu} \nabla \times \overline{E}(\overline{r})$.
- (b) (5 points) Impose the boundary condition that the tangential electric and magnetic fields are continuous at x=0 to solve R and T.
- (c) (5 points) If $\varepsilon_1 > \varepsilon_2$, derive the formula of the critical angle $\theta_i = \theta_c$ at which total reflection occurs.
- 6. (20 points) The vector potential $\vec{A}(\vec{r})$ induced by a Hertzian dipole $\hat{z}I\ell\delta(\vec{r})$ at the origin can be represented in the spherical coordinate as $\bar{A}(\bar{r}) = \hat{z} \frac{\mu l \ell}{4\pi r} e^{-jkr}$.
- (a) (5 points) Derive the magnetic field in the spherical coordinate by using $\bar{H}(\bar{r}) = \frac{1}{\mu} \nabla \times \bar{A}(\bar{r})$.
- (b) (5 points) Derive the electric field in the spherical coordinate by using in the spherical coordinate by using $\overline{E}(\overline{r}) = \frac{1}{i\omega\varepsilon} \nabla \times \overline{H}(\overline{r})$.
- (c) (5 points) In the far field $(kr \gg 1)$, write down the dominant term in the expressions of $\bar{H}(\bar{r})$ in (a) and $\overline{E}(\overline{r})$ in (b).
- (5 points) Derive the time-average power density by using the far-field expressions in (c).

試題隨卷繳回