國立臺灣大學 108 學年度碩士班招生考試試題

題號: 290 科目: 物理化學(A)

共 1 頁之第 1 頁

題號:290

節次: 7

1. (10%) Nitryl chloride (NO₂Cl) decomposes to nitrogen dioxide (NO₂) and chlorine gas (Cl₂) according to the following mechanism. Please determine the overall rate law expression.

(1)
$$2NO_2Cl(g) = \frac{k_1}{k_{-1}}ClO_2(g) + N_2O(g) + ClO(g)$$
 (fast)

(2)
$$N_2O(g) + ClO_2(g)$$
 k_2 $NO_2(g) + NOCl(g)$ (fast)

(3) NOCl(g) + ClO(g)
$$\xrightarrow{k_3}$$
 NO₂(g) + Cl₂(g) (slow)

2. Human blood contains an enzyme (carbonic anhydrase) that catalyzes the formation of HCO₃ and the hydration of CO₂ according to the following reaction:

$$CO_2 + 2H_2O \xrightarrow{\text{Carbonic anhydrase}} HCO_3^- + H_3O^+$$

When catalyzed by carbonic anhydrase, the reaction obeys Michaelis-Menten kinetics, and all elementary steps are shown here:

$$E + CO_2 \xrightarrow{k_1} ECO_2 \qquad ECO_2 + 2H_2O \xrightarrow{k_2} E + HCO_3^- + H_3O^+$$

Its Michaelis-Menten constants are $K_{\rm M} = 8 \times 10^{-5} \, {\rm mol/L}$ and $k_2 = 6 \times 10^5 \, {\rm s}^{-1}$.

- (a) (5%) If the concentration of dissolved CO₂ (non-hydrated) is 0.5 M. What is the reaction order of non-hydrated CO₂?
- (b) (5%) Calculate the maximum reaction rate of CO_2 if the total enzyme concentration is 5×10^{-6} M.
- (c) (5%) Calculate the concentration of CO_2 at which the reaction rate reaches 30% of its maximum value calculated in part (b) where the total enzyme concentration is 5×10^{-6} M.
- 3. (10%) Determine the order of the reaction (a and b) in the rate equation, rate = $kC_A^a C_B^b$, given the following table:

Rate (mol/L·s)	0.04	0.12	0.36	1.08
$C_{A,0}$ (mol/L)	0.5	0.5	1	1
$C_{B,0}$ (mol/L)	0.5	1	0.5	1

- 4. (5%) The activation energy for the isomerization of cyclopropane to propene is 274 kJ/mol. By what factor does the rate of reaction increase as the temperature rises from 500 °C to 550 °C, assuming all else remains constant? (R = 8.314 J/mol·K).
- 5. (5%) Determine the average velocity of a H₂ molecule at 273 K if the average velocity of an O₂ molecule at this temperature is 500 ms⁻¹.
- 6. (5%) A mixture of 5.000×10^{-3} mol of H₂ and 1.000×10^{-2} mol of I₂ is placed in a 5.000 L container at 448 °C, and allowed to come to equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87×10^{-3} M. Calculate equilibrium constant (K_c) at 448 °C for the reaction:

$$H_2(g) + I_2(g)$$
 2HI(g)

- 7. (9%) Consider an ideal refrigerator operating between 0 °C and 25 °C. The refrigerator is to cool the water initially at 25 °C and then produce 1.0 g of ice each second at 0 °C. How much work must be done? The molar heat of fusion of water is 6.0095 kJ/mol and the molar heat capacity is 75.3 J/K·mol.
- 8. (8%) Assume that graphite can be changed to diamond at 298 K by increasing the pressure to 1.5×10^4 bar. Given $\Delta H_{\rm m} = 1895$ J/mol and the volume change $\Delta V_{\rm m} = -1.92 \times 10^{-3}$ L/mol for this process, determine the temperature at which graphite can be changed to diamond at 1 bar.
- 9. (8%) What is the entropy change for the system for producing 1-mol sample of artificial air consisting of 79% N₂ and 21% O₂?
- 10. (8%) The standard reduction potential for Ni²⁺(aq) is -0.250 V. What is the half-cell potential at 25 °C if the activity of Ni²⁺ is 0.015?
- 11. (9%) Assume that C_6H_6 and $C_6H_5CH_3$ form ideal solutions, calculate ΔG , ΔH , and ΔS at 25 °C for the addition of 1.00 mol of C_6H_6 to an infinitely large amount sample of solution with the mole faction of C_6H_6 equal to 0.35. The vapor pressure of C_6H_6 at 25 °C is 0.153 bar.
- 12. (8%) A glass filter with a uniform pore diameter of 0.20 μm is filled with water at 20 °C. Estimate the pressure that would be necessary to blow the capillary water out of the pores of the filter. The surface tension of water at 20 °C is 72.75 dyne/cm.