國立臺灣大學 108 學年度碩士班招生考試試題

科目:工程數學(B)

題號: 229

題號: 229 節次: 6 共 2 頁之第

Problem 1 (20%)

True or False. Two points for each question. No reasons needed in problem 1.

- (A) A 3 x 3 invertible matrix may have -1, 0, and 1 as its eigenvalues.
- (B) A 4 x 4 real matrix cannot have -1, 1 + i, and 2 + i as three of its eigenvalues.
- (C) If A and B are both $n \times n$ invertible matrices, then both AB and A + B are invertible.
- (D) The set of solutions y(x) to $x^2y'' + 3xy' 3y = 0$ for x > 0 forms a subspace of dimension 2.
- (E) The set of $n \times n$ anti-symmetric matrices is a subspace of dimension n(n-1)/2.
- (F) Laplace transform and Fourier transform are linear transformations.
- (G) A column vector (-1, 1) can be a generalized eigenvector of a 2 x 2 symmetric matrix.
- (H) If the characteristic polynomial of a matrix is $\lambda^4 + 4\lambda^3 + 3\lambda^2 4\lambda 4$, the matrix is both invertible and diagonalizable.
- (I) Denote O_{3x3} as a 3 x 3 zero matrix and $A = A_{3x3}$ as another 3 x 3 matrix. Then $\det(A_{3x3}) + \det(-A_{3x3}) = \det(A_{3x3} - A_{3x3}) = \det(O_{3x3}) = 0$ and $A_{3x3} - A_{3x3} = O_{3x3}$.
- (J) Let B, C and D be three singular square matrices such that D = B + C. Then det(D) = det(B + C) = det(B) + det(B) = det(B) + det(B) = det(B) = det(B) + det(B) = det(B)det(C).

Problem 2 (13%)

For
$$x > 0$$
, solve $x^2y'' - 2xy' + 2y = x + x^3(\ln x)^2 + x^3e^x$

Suppose $y(x) = c_1 e^x \cos 2x + c_2 e^x \sin 2x + c_3 e^x + c_4 e^{2x} + \cosh x$, where $c_1, c_2, c_3, \text{ and } c_4$ are constants, is the solution to an ODE of the form:

$$\sum_{k=0}^{n} a_k \frac{d^k y(x)}{dx^k} = f(x)$$

where a_k are constants. Construct such an ODE with the lowest possible order.

Problem 4 (10%)

Let \vec{V} be a solenoidal vector field (meaning that its divergence is zero) described by a stream function:

$$\psi(x,y) = -\frac{\Gamma}{4\pi} \ln(x^2 + y^2)$$

Is \vec{V} irrotational everywhere? What is the circulation $\oint_C \vec{V} \cdot d\vec{r}$ for any arbitrary simple closed curve C enclosing the origin (x, y) = (0, 0)

Problem 5 (10%)

Consider a differential equation y'' - xy = 0, which can be solved by the method of series solution to give a general solution in the form of y(x) = af(x) + bg(x) with two linearly independent base functions and two coefficients to be determined by boundary conditions.

$$f(x) = 1 + \sum_{k=1}^{\infty} \frac{x^{3k}}{(3k)(3k-1)(3k-3)(3k-4)\cdots 3\cdot 2}$$
$$g(x) = x + \sum_{k=1}^{\infty} \frac{x^{3k+1}}{(3k+1)(3k)(3k-2)(3k-3)\cdots 4\cdot 3}$$

題號: 229

國立臺灣大學 108 學年度碩士班招生考試試題

科目:工程數學(B)

行日・二程数字(D 節次: 6

共 2 頁之第 2 頁

Can we solve it as an eigenvalue (Sturm-Liouville) problem $\mathcal{L}\{y\} = \lambda y$ in terms of a linear operator \mathcal{L} and an eigenvalue λ ? If yes, determine the operator and the corresponding base solutions. If not, give reasons.

Problem 6 (10%)

Solve the wave equation for one finite string that is fixed at x = 0, set free at x = L, and released stationary in the form of f(x).

Problem 7 (8%)

Select the correct answer for the integral $\int_{-\infty}^{\infty} \frac{\cos x}{\pi^2 - 4x^2} dx$. No calculation procedures needed in problem 7.

- (A) $\pi/2$
- (B) $-\pi/2$
- (C) 1/2
- (D) -1/2
- (E) 0

Problem 8 (10%)

Expand the function f(x) = x in the interval -1 < x < 1 in the Legendre series expansion of the form $f(x) = \sum_{k=0}^{\infty} A_k P_k(x)$, where the Legendre polynomials $P_k(x)$ is defined as:

$$P_k(x) = \frac{(2k-1)(2k-3)\cdots\cdots1}{k!} \left[x^k - \frac{k(k-1)}{2(2k-1)} x^{k-2} + \frac{k(k-1)(k-2)(k-3)}{2\cdot 4(2k-1)(2k-3)} x^{k-4} - \cdots \right]$$

Write the first five terms of the expansion at least,

Problem 9 (12%)

If a function u(x, t) is said to be piecewise continuous in the interval (0, l), k is an integer, and t > 0, then $\widetilde{U_s}(k, t)$ is called the finite Fourier sine transform of u(x, t) and defined as:

$$\widetilde{U_s}(k,t) = \int_0^l u(x,t) \sin \frac{k\pi x}{l} dx$$

u(x, t) can also be expressed in terms of $\widetilde{U}_s(k, t)$ as:

$$u(x,t) = \frac{2}{l} \sum_{k=1}^{\infty} \widetilde{U_s}(k,t) \sin \frac{k\pi x}{l}$$

The finite Fourier cosine transform of u(x, t) can be defined in a similar way as $\widetilde{U_c}(k, t)$.

- (A) Find the finite Fourier sine transform of $\frac{\partial u}{\partial x}$ and express it in terms of $\widetilde{U_c}$.
- (B) Find the finite Fourier sine transform of $\frac{\partial^2 u}{\partial x^2}$ and express it in terms of $\widetilde{U_s}$.
- (C) Use your above answers and the principles of the finite Fourier sine transform to solve the following heat conduction equation by integrating both sides of the PDE with respect to x:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, 0 < x < 2, t > 0 \\ u(0, t) = u(2, t) = 0 \end{cases}$$