題號: 63

國立臺灣大學 107 學年度碩士班招生考試試題

C¹³ NMR: δ 69.20 145.15 127.80, 128.39 128.78

科目: 有機無機

節次: 6

共 5 頁之第 1 頁

題號:63

有機部份 (50分)

(b)

第一題 寫出下列化合物 IUPAC 名稱。(各 2 分, 共 8 分)

Problem 1 Give IUPAC name for the following compounds. (8 pts)

$$A$$
 B
 C
 NO_2
 OI
 OI
 OI
 OI

第二題 寫出下列化合物結構式。(共24分)

Problem 2 Predict the products of the following reactions. (24 pts)

Si— O H BH₃ Compound G (化合物 G 2 分)

CuCN Compound O (化合物 O 2 分)

(i) CH₂I₂ Compound R (化合物 R 2 分)

國立臺灣大學 107 學年度碩士班招生考試試題

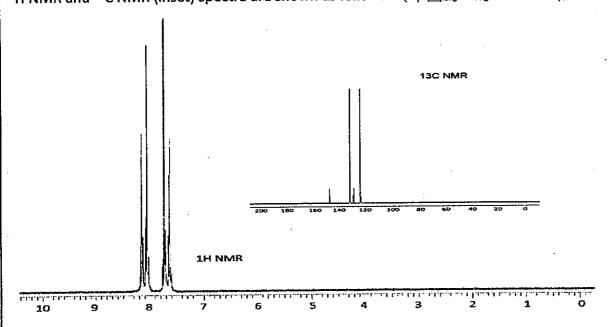
科目: 有機無機

63

節次: 6

題號:63

共 5 頁之第 2 頁


第三題 (共8分)

Problem 3 (8 pts)

(a) 寫出化合物 S 結構式。 (2 分). What is the structural formula of S? (2 pts)

Molecular weight of S(S的分子量): 202.005;

 1 H NMR and 13 C NMR (inset) spectra are shown as follows (下圖為 S 的 1 H NMR 和 13 C NMR (插圖))

(b) 寫出化合物 T, U, V 結構式。(各 2 分) Predict the chemical structures of T (2 pts), U (2 pts), and V (2 pts).

化合物 V 分子式 為 C10 H12O4,其 NMR 與 IR 光譜如下:

Compound V, with a molecular formula of C₁₀ H₁₂O₄, shows the following spectral data

 1 H NMR (400 MHz, CDCl₃) δ 5.71 (s, 2H), 3.78 (s, 6H), 3.0 (s, 4H);

 13 C NMR (100 MHz, CDCl₃) δ 168.5, 132.5, 122.4, 52.2, 27.5;

IR (cm⁻¹) 3038, 2998, 2952, 2884, 2843, 2827, 1724, 1681, 1644, 1434, 1256, 1063.

第四題 環己烯,1,3-環己二烯,與苯的氫化熱分別為 28.6 kcal/mol, 55.4 kcal/與 49.8 kcal/mol。按上述數據,估算苯的芳香 穩定共振能,並提出說明。 (2 分)

Problem 4 The heats of hydrogenation of cyclohexene, 1,3-cyclohexadiene, and benzene are 28.6 kcal/mol, 55.4 kcal/mol, and 49.8 kcal/mol respectively. On the basis of these data, estimate the aromatic stabilization energy (the resonance energy) of benzene. Give explanations to support your estimation. (2 pts)

接次頁

國立臺灣大學 107 學年度碩士班招生考試試題

科目: 有機無機

63

節次: 6

題號:

共 5 頁之第 3 頁

題號:63

第五題 寫出下列反應之機構。 (3分)

Problem 5 Propose reaction mechanisms for the following transformation. (3 pts)

$$\begin{array}{c|c} CH_3 & O \\ O & O \\ O & CH_3 \end{array} \xrightarrow{\tilde{E}} CH_3 \end{array} \xrightarrow{t\text{-BuOK}} \begin{array}{c} O \\ O \\ O \\ \end{array}$$

第六題 提出下圖的合成策略,試劑庫中的試劑,或其他少於三碳(含)有機試劑均可使用。 (5分)

Problem 6 How could you carry out the following transformation? Either the reagents listed in the following reagent tool box or reagents less than 3 carbons can be used. (5 pts)

Reagent tool box (試	劉庫)			
N-Br	СІ ОООН	n N		
KHSO ₄	OH OH	H ₂ O ₂		
CHCl₃		-\sigma_o\ci	H-C≌C-H	
Fe	Ni	NH ₃	NaNH ₂	
Li	Na	Mg	K	
NaBH4	BH ₃	PBr ₃	Br ₂	
SOCl ₂	HCI	Pd/C, H₂	F	
<u>}</u> -0-κ⁺	NaOH	CH₃−O⁻K⁺	OsO ₄	
HgSO ₄	CH ₂ I ₂ , Zn/Cu	NalO ₄	O ₃ / Ma ₂ S	

國立臺灣大學107學年度碩士班招生考試試題

科目:有機無機

節次: 6

題號: 63

題號:63

共 5 頁之第 4 頁

無機部份 (共50分)

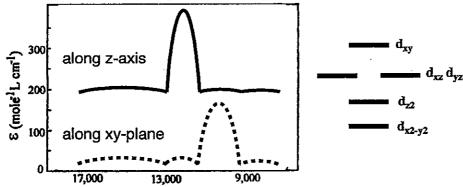
第1~5題:多重選擇題,每題4分(錯一個選項2分,錯兩個選項0分),請依題號順序於『選擇題作答區』內作答。

- 1. Which of the following description of metallic and ionic solid is/are correct?
 - a. The packing density of simple cubic is lower than that of diamond structure.
 - b. In an interstitial alloy, the atomic radii difference between guest element and host element should be less than 15%.
 - c. The calculated lattice enthalpy of LiF using Born-Mayer equation is expected to differ substantially from the experimental value obtained from Born-Haber cycle.
 - d. The non-stoichiometric Fe₂O_{3-x} oxide is an n-type semiconductor.
 - e. None of the above.
- 2. Which of the following description of acids is/are correct?
 - a. HNO₃ and HSO₃F behave as bases in liquid H₂SO₄.
 - b. $HClO_4$ (p $K_a = -10$) is more acidic than HCl (p $K_a = -8$) in water.
 - c. Acetic acid $(pK_{ion} = 14.5)$ is a better solvent than water $(pK_{ion} = 14)$ in determining the acidity difference of acids.
 - d. The pH value of water at higher temperature is smaller.
 - e. None of the above.
- 3. Which of the following description of chemical bonds is/are correct?
 - a. M-M π -bond for heavier metal is always weaker than that of the lighter metals in the same group.
 - b. C-O single bond is stronger than Si-O single bond due to the better overlap between 2p orbitals.
 - c. The M-C bond in [V(CO)₆] is stronger than that in [Mn(CO)₆]⁺.
 - d. There is M-M single bond in Re₂(CO)₁₀ and Fe₂(CO)₉.
 - e. None of the above.
- 4. Which of the following description of a [NiL₆]²⁺ complex is/are correct?
 - a. The ground state term of the complex is ${}^3T_{Ig}$
 - b. The Δ_0 can be estimated from the lowest d-d transition band.
 - c. The absorption bands of $[Ni(H_2O)_6]^{2+}$ are lower in energy compared to that of $[Ni(en)_3]^{2+}$.
 - d. If the central metal ion is replaced by Pt²⁺, all absorption bands will be red-shifted.
 - e. None of the above.
- 5. Which of the following description of organometallic complexes is/are correct?
 - a. The associative ligand substitution of [NiL₄] ($L = P(OEt)_3$) can be promoted by changing the L from $P(OEt)_3$ to $P(O^iPr)_3$.
 - b. A cis orientation of eliminating ligand is required for concerted reductive elimination.
 - c. Reductive elimination of ligands can be promoted by oxidation of the metal center.
 - d. For an 18-electron L_n M-Bn complex (Bn = benzyl), dissociation of a *cis*-ligand is required for β -hydride elimination.
 - e. None of the above.

國立臺灣大學107學年度碩士班招生考試試題

題號: 63 科目:有機無機

. 題號:63 共 5 頁之第 5 頁


節次: 6

第 6~8 題問答題,請依題號順序於『非選擇題作答區』內作答,並應註明作答之部份及題號。

6. Please give the dⁿ configuration of the central metal ion and the total electron count of the metal complex. (12 points)

a.
tBu
 b. PR_2 c. NC PMe_3 tBu tBu

- 7. Please answer the following questions about a $C_4B_2H_6$ molecule:
 - a. Classify the compound according to Wade's rule. Justify your answer (4 points)
 - b. Structure of all isomers and their corresponding symmetry point group. (6 points)
- 8. It is known that a tetra-coordinate Cu²⁺ complex adopts D_{2d} geometry in solid state. With the given d-orbital splitting, please assign the transition bands (12,000 cm⁻¹ and 10,000 cm⁻¹) shown in the polarized absorption spectrum. (8 points)

$\frac{D_{2d} = V_d}{\left(\overline{42}\right)m}$	E	254	C ₂	2C' ₂	2σ _d		
Aı	1	1	1	1	1		$x^2 + y^2, z^2$
A_2	1	1	1	-1	-1	R_z	
$\mathbf{B_{I}}$	1	-1	1	1	-1		$x^2 - y^2$
B_2	1	-1	1	-1	1	z	ху
E	2	0	- 2	0	0	(x, y) (R_x, R_y)	(xz, yz)

試題隨卷繳回