國立臺灣大學 107 學年度碩士班招生考試試題

題號: 53 科目:代數 節次: 2

題號: 53 共 | 頁之第 | 頁

1. (20%)

- (a) Prove that every group of order 455 is abelian and cyclic.
- (b) Show that no group of order 56 is simple.
- 2. (20%)Assume that G is a finite group and p is the smallest prime dividing the order of G.
 - (a) Let H be a normal subgroup of order p in G. Show that H is in the center of G.
 - (b) Let H be a subgroup of index p in G. Show that H is a normal subgroup of G.
- 3. (20%)
 - (a) Let R be a commutative ring. Show that R[x] is a PID $\iff R$ is a field.
 - (b) Let A_d be the ring of integers in the quadratic field $\mathbb{Q}(\sqrt{d})$. Show that A_5 is a UFD.
- 4. (16 %)
 - (a) Let p be a prime integer and \mathbb{F}_{p^n} be a finite field of order p^n . Show that all subfields of \mathbb{F}_{p^n} are Galois over \mathbb{F}_p .
 - (b) Show that an algebraically closed field must be infinite.
- 5. (24 %)
 - (a) Determine the Galois group of the splitting field L of x^5-1 over $\mathbb Q$ and the correspondence between subgroups of G and subextensions of L.
 - (b) Let $K = \mathbb{Q}(\zeta)$ with ζ a primitive 6th root of unity. Set $f(x) = (x^2 2)(x^3 2)$ and let L be the splitting field of f over K. Find a such that L = K(a); determine [L : K], and show that L is a cyclic extension of K.

試題隨卷繳回