題號: 428

## 國立臺灣大學107學年度碩士班招生考試試題

科目: 邏輯設計

節次: 7

題號:428 共 2 頁之第 1 頁

#### **Problem 1 (25%)**

Consider the gated X-latch below where X is the input and C the gate input.

- (a) What's the next-state equation of the X-latch? (5%)
- (b) Assume that each gate has a 1 ns delay. Complete the timing diagram below. (10%)
- (c) Does the X-latch works correctly? If not, fix the problem and justify your solution. (10%)





### **Problem 2 (20%)**

Derive a minimal state table for a single-input and single-output Moore-type FSM that produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. Overlapping sequences should be detected.

#### **Problem 3 (15%)**

The 4-bit comparator below compares two binary numbers  $A = a_3 a_2 a_1 a_0$  and  $B = b_3 b_2 b_1 b_0$  and produces greater than (GT), equal (EQ), and less than (LT) outputs according to the table below. Show how to construct an 8-bit comparator with two 4-bit ones and external logic.



|                                                 | GT | EQ | LT |
|-------------------------------------------------|----|----|----|
| A > B                                           | 1  | 0  | 0  |
| A = B                                           | 0  | 1  | 0  |
| A <b< td=""><td>0</td><td>0</td><td>1</td></b<> | 0  | 0  | 1  |

time (ns)

題號: 428

### 國立臺灣大學107學年度碩士班招生考試試題

科目: 邏輯設計

節次: 7

題號:428

共 2 頁之第 2 頁

### **Problem 4 (10%)**

Implement the following functions using only two of the decoders described below and two 8-input OR gates.

$$f(w, x, y, z) = \sum m(0,4,5,7,8,12,15)$$

$$g(w, x, y, z) = \sum m(1,3,5,12,13,14)$$



### **Problem 5 (15%)**

Find "all" minimum sum of products expressions for f and g.

$$f(a,b,c,d) = \sum m(0,2,3,5,7,8,9,10,11) + \sum d(4,15)$$

$$g(a,b,c,d) = \sum m(0,2,4,5,6,7,8,9,10,14) + \sum d(3,13)$$

### **Problem 6 (15%)**

Construct a base 20 "asynchronous" counter that counts the number of input pulses (from 0 to 19, back to 0, and repeat) using JK flip flops, which, as shown below, are falling-edge triggered and have an active-low clear input, cIrN. Denote the counter output by  $C = C_4C_3C_2C_1C_0$ .



# 試題隨恭繳回