題號: 419

國立臺灣大學 107 學年度碩士班招生考試試題

題號: 419

共 / 頁之第 / 頁

科目:數學節次: 4

1. (10%) The number of nonnegative integer solutions to

$$L \le x_1 + x_2 + \dots + x_n \le H$$

is ____

2. (10%) The solution to the recurrence equation

$$a_n = 2a_{n-1} + 3a_{n-2}$$
 with $a_0 = 1$ and $a_1 = 1$ is $a_n =$ ______.

- 3. (10%) The generating function for the square numbers 1², 2², 3², ... is _____.
- 4. (10%) The number of reflexive symmetric relations on A where |A| = m is _____.
- 5. (10%) The number of simple, labeled graphs (with self-loops allowed) with n nodes is _____.

The number of simple, labeled graphs with n nodes and m edges is ______.

6. (10%) Let
$$A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$
. Please find $f(A)$, where $f(t) = t^4 - 3t^3 - 6t^2 + 7t + 2$.

7. (10%) Let
$$A = \begin{bmatrix} 0 & 0 & 0 & a_0 \\ -1 & 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & 0 & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & -1 & a_{n-1} \end{bmatrix}_{n \times n}$$
 and I_n be the $n \times n$ identity matrix. Find $det(A + tI_n)$.

8. (10%) Consider a subspace $V = P_2(t)$ of P(t) with inner product defined as

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt.$$

Please find an orthogonal set of $\{1, t, t^2\}$ with integer coefficients and the projection of t^3 onto V.

9. (10%) Your answer will be considered correct only if all the true statements are selected.

Let A be an $n \times n$ matrix.

- (a) If x_1 and x_2 are the eigenvectors of A, then $x_1 + x_2$ is also an eigenvector of A.
- (b) If $A^T = -A$, then A is singular.
- (c) If $A^2 = A$. $(A + I)^n = I + (2^n + 1)A$.
- (d) If $A = A^T$, then A is diagonalizable.

(e) If
$$A = \begin{bmatrix} B & C \\ O & D \end{bmatrix}$$
 and B and D are invertible, then $A^{-1} = \begin{bmatrix} B^{-1} & -B^{-1}CD^{-1} \\ O & D^{-1} \end{bmatrix}$.

- 10. (10%) Your answer will be considered correct only if all the true statements are selected.
 - (a) Suppose $\{u, v, w\}$ is linearly independent, then $\{u + v, v + w, w + u\}$ is also linearly independent.
 - (b) If two matrices A and B are similar, then they have the same eigenvalues.
 - (c) If two matrices A and B are similar, then they have the same eigenvectors.
 - (d) Let V be a vector space of $m \times n$ matrices over \mathcal{R} . $\langle A, B \rangle = tr(B^T A)$ defines an inner product in V.
 - (e) If U and W are subspaces of a finite-dimensional inner product space V, then $(U+W)^{\perp} = U^{\perp} \cup W^{\perp}$.

試題隨卷繳回