題號: 232

國立臺灣大學 107 學年度碩士班招生考試試題

科目: 工程數學(B)

題號:232

共1頁之第1頁

節次: 6_____

- 1. Consider the linear differential equation $\ddot{y} + 2\dot{y} + 2y = f(t)$.
 - (a) Solve the initial-value problem and discuss the continuities of y(t) and $\dot{y}(t)$ at t = 0 under the condition $f(t) = \delta(t)$ and $y(0) = \dot{y}(0) = 0$, where $\delta(t)$ is the Dirac delta function. (5%)
 - (b) Express the solution of the following initial-value problem in its simplest form. $\ddot{v} + 2\dot{v} + 2v = f(t)$, $y(0) = \dot{y}(0) = 0$, where f(t) is any general function. (5%)
- 2. Find the eigenvalues and their corresponding eigenvectors of the following matrix, and show how to use these eigenvectors to form an orthogonal matrix that can diagonalize the matrix. (15%)

$$\mathbf{A} = \begin{bmatrix} 5 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 7 \end{bmatrix}$$

- 3. Which of the following statement is the most accurate? (5%)
 - (a) Laplace transform can be considered as a special case or subset of Fourier transform.
 - (b) Laplace transform is used for periodic response of a system, while Fourier transform is used for impulse response of a system.
 - (c) In principle, Fourier transform is suitable for steady-state signal analysis, while Laplace transform is suitable for transient signal analysis.
 - (d) Fourier transform mainly deals with both changing magnitudes and oscillation of a signal.
 - (e) If you want to understand what a system does when you flip a light switch, you prefer to use Fourier transform.
- 4. Expand $f(x) = x(\pi x)$ at $[0, \pi]$ in a Fourier sine series. Express your answer in the most compact form. Based on your results, find the value of the following summation: (10%)

$$\sum_{n=1}^{\infty} \left[\frac{\left(-1\right)^{n-1}}{\left(2n-1\right)^3} + \frac{\left(-1\right)^{n-1}}{\left(2n+1\right)^3} \right]$$

5. Knowing x(t) is a continuous function, solve the following integral equation in which the integration is from 0 to t and the non-homogeneous part is $t \exp(-t) - \sin t$. (10%)

$$\int_0^t ux(u)\cos(t-u)du = te^{-t} - \sin t$$

- 6. Consider a circular helix $\bar{x}(\theta) = (r\cos\theta, -r\sin\theta, c\theta)$, where r and c are positive constants.
 - (a) Find the arc length for $0 \le \theta \le 2\pi$. (3%)
 - (b) Find the normal plane at $\theta = 0$. (2%)
 - (c) Find the unit normal vector $\bar{n}(\theta)$ and unit binormal vector $\bar{b}(\theta)$ as function of θ , i.e. $\bar{n} = \bar{n}(\theta)$, $\bar{b} = \bar{b}(\theta)$. (8%)
 - (d) Find the curvature κ as a function of θ , i.e. $k = k(\theta)$. (4%)
- 7. Consider the helicoid $\bar{x}(u_1, u_2) = (u_1 \cos u_2, u_1 \sin u_2, bu_2)$, where b is a constant.
 - (a) Find the tangent plane to the helicoid at $u_1 = u_2 = \pi$. (4%)
 - (b) Find the area for $0 \le u_1 \le a$ and $0 \le u_2 \le 2\pi$, where a is also a constant. (4%)
- 8. What is a linear partial differential equation (PDE)? Give an example of non-linear PDE and explain in your view why it is non-linear. (4%)
- 9. Let S(x,t) denote the displacement of a finite string over $0 \le x \le \pi$ with a fixed end at x = 0 and a free end at $x = \pi$ such that S(0,t) = 0 and $\partial S/\partial x(\pi,t) = 0$. The string starts to vibrate from its initial states S(x,0) = 0 and $\partial S/\partial t(x,0) = x$ after an external force $F(x) = -x(x \pi)$. The subsequent string displacement can be described by a 1-D wave equation with a propagation speed of 9. Solve for S(x,t). (7%)
- 10. (a) Evaluate $\int_C \frac{e^{i\alpha z}}{z^4 + 1} dz$ where C is a semicircle of radius R > 1 centered at z = 0 on the complex plane. (7%)
 - (b) Apply 10(a) and Fourier transformation to solve $\frac{d^4 f}{dx^4} + f = g(x)$ for a general driving function g(x), provided that

$$\frac{d^k f}{dx^k} \to 0 \text{ as } |x| \to \infty \text{ for integer } k \ge 0. (7\%)$$