國立臺灣大學 106 學年度碩士班招生考試試題

科目:工程數學(D)

題號: 417

節次: 2 共 2 頁之第 / 頁

1. (20%) Label the following statements as being true or false. (No explanation is needed. Each correct answer gets 2% and each wrong answer gets 0%):

- (a) Similar matrices have the same characteristic polynomial.
- (b) If $A^T = -A$, then det A = 0.
- (c) Let $A = [a_1 \ a_2 \ a_3 \ a_4]$ and $A' = [a_1 \ a_4 \ a_2 \ a_3]$. If Ax = b is consistent, then $A'x = -2b + 5a_2$ is also consistent.
- (d) If λ is an eigenvalue of A^2 , then λ is also an eigenvalue of A.
- (e) Let V and W be subspaces of \mathbb{R}^n . If $V^{\perp} = W^{\perp}$, then V = W.
- (f) Let R be the reduced row echelon form of A. Then the reduced row echelon form of $[A \ A]$ is $[R \ 0]$.
- (g) If A is a nonzero symmetric matrix, then A^2 is also a nonzero symmetric matrix.
- (h) Let A be an $m \times n$ matrix and b be a vector in \mathbb{R}^m . If $A\mathbf{x} = \mathbf{b}$ has a unique solution, then $n \ge m$.
- (i) If two vectors spaces are isomorphic, then they have the same dimension.
- (j) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a linearly independent subset of \mathbb{R}^n . Let \mathbf{v} and \mathbf{w} be $n \times 1$ vectors. If $\mathbf{v} \cdot \mathbf{v}_i = \mathbf{w} \cdot \mathbf{v}_i$ for $i = 1, 2, \dots, n$, then $\mathbf{v} = \mathbf{w}$.
- 2. Let $W = \text{Span } \{\mathbf{v}_1, \ \mathbf{v}_2\}$ where

$$\mathbf{v_1} = \left[egin{array}{c} 1 \ 0 \ -1 \ 1 \end{array}
ight], \quad \mathbf{v_2} = \left[egin{array}{c} 2 \ 1 \ -1 \ 0 \end{array}
ight]$$

- (a) (5%) Find a basis for W^{\perp} .
- (b) (5%) Find an orthonormal basis for W^{\perp} .
- (c) (5%) Let $\mathbf{v} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Find a vector \mathbf{z} in W^{\perp} such that $||\mathbf{v} \mathbf{z}||$ is minimized.
- 3. Let T be a linear operator on \mathcal{P}_2 defined by

$$T(p(x)) = (p(0) + p(1)) + (p'(0) + p(1))x + (p(0) + p'(1))x^{2},$$

where p'(x) is the derivative of p(x).

- (a) (6%) Let $\mathcal{B} = \{1, x, x^2\}$ be a basis for \mathcal{P}_2 . Find $[T]_{\mathcal{B}}$, the matrix representation of T with respect to \mathcal{B} .
- (b) (9%) Find a basis \mathcal{B}' for \mathcal{P}_2 such that $[T]_{\mathcal{B}'}$ is a diagonal matrix.

國立臺灣大學 106 學年度碩士班招生考試試題

: 工程數學(D)

4. (20%) Provide answers to the following 4 sub-problems. Mathematical derivation is optional.

- (a) (5%) Consider the trials of testing each IC for being accepted or rejected. Let Xbe the random variable that represents the minimum number of trials needed until there are k > 0 accepted ICs and $F_X(x)$ be its cumultaive distribution function (CDF). Let Y be the random variable that represents the number of accepted ICs in n > 0 trials and $F_Y(y)$ be its CDF. Write $F_X(x)$ in terms of $F_Y(y)$.
- (b) (5%) Assume that packet arrivals in a time duration of τ follow the Poisson distribution with expected value λ . It is known that there is one packet arrival in a duration of τ . What is the probability distribution of its arrival time T?
- (c) (5%) Let X_1, X_2, \ldots, X_n be *iid* continuous uniform (0, 1) random variables, where n > 0 is a constant. Let

$$W = \lim_{n \to \infty} n \min (X_1, X_2, \dots, X_n)$$

be another random variable. Find the probability density function (PDF) of W.

- (d) (5%) Let X_1, X_2, \ldots, X_N be iid Gaussian random variables each with expected value 10 and standard deviation 2, where N is a Poisson random variable with expected value 5. What is the variance of $X_1 + X_2 + \cdots + X_N$?
- 5. (16%) The theorem of Continuity of Probability Measure states that for any increasing or decreasing sequence of events, $\{E_n, n \geq 1\}$,

$$\lim_{n\to\infty} P\left[E_n\right] = P\left[\lim_{n\to\infty} E_n\right],\,$$

where $P[\cdot]$ is a probability measure that satisfies the axioms of probability.

- (a) (6%) Prove the theorem of Continuity of Probability Measure.
- (b) (10%) What is the consequence of the Continuity of Probability Measure? State a theorem whose proof directly relies on the theorem of Continuity of Probability Measure. Then, prove the theorem that you stated.
- 6. (14%) Let X and Y be two jointly distributed random variables with the joint PDF as follows:

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 \le x \le 1, 0 \le y \le x, \\ 0, & \text{otherwise.} \end{cases}$$

For some reason, samples of random variable X can be observed, but not for random variable Y. It is desired to estimate Y based on the observation of X.

- (a) (7%) Find the best linear estimate (i.e. aX + b with a, b being constants to be determined) of Y given X such that the mean square estimation error is minimized. What is the minimum mean square error thus found?
- (b) (7%) Find the best estimate (that is not necessarily linear) of Y given X such that the mean square estimation error is minimized. What is the minimum mean square error thus found?

試題隨卷繳回