題號: 342

國立臺灣大學 106 學年度碩士班招生考試試題

科目:自動控制

節次: 2

題號: 342 共 2 頁之第 / 頁

請於答案卷上作答,於試題卷上作答者,不予計分。

- 1. An electromechanical position control system is shown in the following figure. The motor has an electrical constant K_c , a torque constant K_c , an armature inductance L_a and a resistance R_a . The rotor has an inertia J_1 and a viscous friction B. The load has an inertia J_2 . The two inertias are connected by a shaft with a spring constant k and an equivalent viscous damping b.
 - (a) Write the equations of motion (10%)
 - (b) Write the equation as a set of simultaneous first-order equations in state-variable form. Use the state vector $\mathbf{x} = [\theta_2 \ \dot{\theta}_2 \ \theta_1 \ \dot{\theta}_1 \ i_a]^T (10\%)$

Figure for Problem 1

2. If a DC motor is modeled as:

$$Y(s) = \frac{A}{(\tau_1 s + 1)(\tau_2 s + 1)} V_a(s)$$

Please derive a PD controller $(k_p + k_d s)$ so that the poles of the closed-loop system are as shown in the following Figure. Express k_p , k_d in terms of three parameters related to the pole placement ζ (damping ratio) and ω_n (undamped natural frequency). (20%)

3. Please discuss the capabilities of external disturbance rejection for an open-loop control system and a closed-loop control system. (10%)

國立臺灣大學 106 學年度碩士班招生考試試題

科目:自動控制

342

題號: 342 節次:

> 4. The block diagram of a liquid-level control system is shown in the following figure. The following data are given: $K_a = 50$, $K_I = 50$, $K_b = 0.0706$, J = 0.006, $R_a = 10$, $K_i = 10$, $K_o = 40$, and n = 1/100. Let N and A be the variable parameters.

- (a) Find the ranges of N and A so that the closed-loop system is asymptotically stable. Indicate the region in the N versus A plane in which the system is stable. Use the fact that N is an integer. (10%)
- (b) If A is infinitely large, what is the maximum value of N (integer) for stability. (5%)

Figure for Problem 4

- 5. The state diagram of a control system containing a motor coupled to a tachometer and an inertial load is shown in the following figure.
 - (a) Write the state equations of the system using θ_L , ω_L , θ_l , ω_l , θ_m , and ω_m as the state variables (in the listed order). The motor torque T_m is the input. (6%)
 - (b) Find the following transfer functions: $\frac{\Theta_L(s)}{T_m(s)}$, $\frac{\Theta_l(s)}{T_m(s)}$, and $\frac{\Theta_m(s)}{T_m(s)}$. (9%)

Figure for Problem 5

6. Refer to the figure of Problem 4, but the parameter values are now given as: $K_a = 50$, $K_I = 10$, $K_b = 0.0706$, J= 0.006, $R_a = 10$, $K_i = 10$, $K_o = 50$, A = 50, N = 1, and n = 1/100. (a) Find the transfer functions $M_H(s) = 1/100$. H(s)/R(s). (2%) (b) The transfer function $M_H(s)$ is to be approximated by a second-order system with the closed-loop transfer function $M_L(s) = \frac{G_L(s)}{1 + G_L(s)} = \frac{1}{1 + d_1 s + d_2 s^2}$, where d_1 and d_2 are real constants. Find d_1 and d_2 . (8%) <Hint: The criterion of finding the low-order $M_L(s)$, given $M_H(s)$, is that the following relation should be satisfied as closely as possible: $|M_H(j\omega)|^2/|M_L(j\omega)|^2=1$, for $0 \le \omega \le \infty$ > (c) For the approximated second-order system, find the performance indices in time domain for the system, i.e., the time that the maximum overshoot (MO) occurs, t_{max} ; percentage of MO, MO%; delay time, t_d ; rising time, t_r ; and settling time, t_s . (10%)

試題隨卷繳回