題號: 217

國立臺灣大學106學年度碩士班招生考試試題

科目:材料力學(A)

節次: 8

題號: 217 共 1 頁之第 1 頁

Question 1 (25%)

A rubber cylinder R of length L and cross-sectional area A is compressed inside a steel cylinder S by a force F that applies a uniformly distributed pressure to the rubber. Derive a formula for the shortening δ of the rubber cylinder.

Question 2 (25%)

A cantilever beam of rectangular cross section (with b=20 mm, height h=175 mm) is loaded by a force P that acts at the mid-height of the beam and is inclined at an angle α to the vertical. Two strain gages are placed at point C, which is also located at the mid-height of the beam. Gage A measures the strain in the horizontal direction, and gage B measures the strain at an angle $\beta=60^{\circ}$ to the horizontal. The measured strains are $\epsilon_A=145\times10^{-6}$ and $\epsilon_B=-165\times10^{-6}$. Determine the force P and the angle α , assuming the material is steel with E=200 GPa and $\nu=1/3$.

Question 3 (25%)

A cylindrical pressure vessel with flat ends is subjected to a torque T and a bending moment M. The outer radius is 300 mm and the wall thickness is 25 mm. The loads are given as follows. $T = 90 \text{ kN} \cdot \text{m}$, $M = 100 \text{ kN} \cdot \text{m}$, and the internal pressure p = 6.25 MPa. Determine the maximum tensile stress σ_t , maximum compressive stress σ_c , and maximum shear stress τ_{max} on the wall of the cylinder. Show the results on a plot of Mohr's circle of stress.

Question 4 (25%)

A cantilever beam of length L and loaded by a triangularly distributed load of maximum intensity q_0 at B. Determine the reaction forces at A and B and the angle of rotation θ_B .

試題隨卷繳回