國立臺灣大學 106 學年度碩士班招生考試試題

題號: 101 科目:機率統計

中日・機平航町 5次: 2 共 1 頁之第

1. (7%) (8%) Let X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2} be two independent random samples from populations 1 and 2 with the corresponding distributions $F_1(x)$ and $F_2(x)$. Derive the mean and variance of $T_1 = \sum_{j=1}^{n_1} R(X_{1j})$ under $F_1(x) = F_2(x)$, where $R(X_{1j})$ is the rank of X_{1j} among $\{X_{ij}: i=1,2; j=1,\ldots,n_i\}$.

- 2. (20%) Let X_1 , X_2 and X_3 be a random sample from a $Poisson(\lambda)$. Moreover, let $Y_1 = X_1 + X_3$, $Y_2 = X_2 + X_3$, and $Z_i = I(Y_i > 0)$, i = 1, 2. Compute the correlation of Z_1 and Z_2 .
- 3. (15%) Let X_1, \ldots, X_n be a random sample from a $Bernoulli(\pi)$, $0 < \pi < 1$. Find the smallest sample size to achieve $P(|\widehat{\pi}_n \pi| \le e) \approx 1 \alpha$, where $\widehat{\pi}_n$ is the sample mean.
- 4. (20%) Let X_1, \ldots, X_n be a random sample from a density function

$$f(x|\theta) = \theta e^{-\theta x} I_{(0,\infty)}(x), \quad 0 < \theta < \infty.$$

Derive the sampling distribution of the uniformly minimum variance unbiased estimator of $1/\theta$.

- 5. Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 , where σ^2 is an unknown constant. Consider the null hypothesis $H_0: \mu \geq \mu_0$ versus the alternative hypothesis $H_A: \mu < \mu_0$.
- (5a) (8%) Derive the likelihood ratio test with size α , $0 < \alpha < 1$.
- (5b) (7%) Express the corresponding p-value of the likelihood ratio test based on observed values x_1, \ldots, x_n of a random sample.
- (5c) (7%) Compute the power at μ_1 with $\mu_1 < \mu_0$.
- (5d) (8%) Construct the uniformly most accurate $(1-\alpha)$ confidence interval of μ .

試題隨卷繳回