題號: 57

國立臺灣大學 105 學年度碩士班招生考試試題

科目:線性代數(A)

題號: 57

頁之第 頁

節次: 4

GRADUATE ENTRANCE EXAM 2016: LINEAR ALGEBRA

Notation: R is the set of real numbers, and C is the set of complex numbers. If $F = \mathbb{R}$ or C, denote by $M_n(F)$ the $n \times n$ matrices with entries in F.

Problem 1 (10pts). Find all possible $a \in \mathbf{R}$ such that the vectors

$$(1,3,a), (a,4,3), (0,a,1) \in \mathbb{R}^3$$

are linearly dependent.

Problem 2 (10pts). Find a set of polynomials $p_0(t) = a$, $p_1(t) = b + ct$ and $p_2(t) = a$ $d+et+ft^2$ with coefficients $a,b,c,d,e,f\in\mathbb{R}$ so that $\{p_0,p_1,p_2\}$ is an orthonormal set of polynomials with respect to the inner product $\langle f,g\rangle=\int_0^2 f(t)g(t)dt$.

Problem 3 (20pts). Let

$$A = \begin{pmatrix} 1 & -3 & 0 \\ 3 & 4 & -3 \\ 3 & 3 & -2 \end{pmatrix} \in M_3(\mathbf{R}).$$

Find an invertible $P \in M_3(\mathbf{R})$ such that

$$P^{-1}AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & -3 & 1 \end{pmatrix}.$$

Problem 4 (15pts). Let $V=M_3({\bf C})$ be a 9-dimension vector space over ${\bf C}$ and let

$$A = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2 \end{pmatrix}.$$

Define the linear transformation $T: V \to V$ by

$$T(B) = ABA^{-1}.$$

Show that T is also diagonalizable.

Problem 5 (20pts). Let $A, B \in M_n(\mathbf{C})$. Suppose that eigenvalues of A and B are all real numbers and that rank $A = \operatorname{rank} A^2$ and rank $B = \operatorname{rank} B^2$. If A^3 is similar to B^3 (namely there exists an invertible $P \in M_n(\mathbb{C})$ such that $P^{-1}A^3P = B^3$), prove that \hat{A} is similar to \hat{B} .

Problem 6 (25pts). Let A and B be elements in $M_n(C)$. If $A^2B + BA^2 = 2ABA$, show that $(AB - BA)^n = 0$.

試題隨卷繳回