題號: 321 國立臺灣大學 105 學年度碩士班招生考試試題

科目:統計學(D)

321 節次: 共 頁之第

1. Let X be a normal random variable with a population mean μ and variance σ^2 . Let X_1 , $X_2, \, ..., \, X_i$ be a random sample of size n from X. Please prove that the sample mean $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ is an unbiased estimator of μ (10 %).

- 2. Let X be a normal random variable with a population mean μ and variance σ^2 . Let X_1 , $X_2, \, ..., \, X_i$ be a random sample of size n from X. Please prove that the sample variance $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$ is an unbiased estimator of σ^2 (20 \Re).
- 3. Let X be a normal random variable with a population mean μ and variance σ^2 . Let X_1 , $X_2, \, ..., \, X_i$ be a random sample of size n from X. Let $\, \overline{X} \,$ be the sample mean and $\, S^2_{\overline{x}} \,$ be the sample variance of \overline{X} . Please prove that the statistic $\frac{(\overline{X} - \mu)}{S_{\overline{x}}}$ is distributed as a *t*-distribution with n-1 degrees of freedom (20 %).
- 4. Let $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, i = 1, 2, ..., n. Assume ϵ_i are independently and identically distributed as normal distributions with population mean 0 and variance σ^2 , and the independent variable X is measured without error. Please
 - (1) derive the ordinary least squares estimators of β_0 and β_1 (20 β), and
 - (2) show that both ordinary least squares estimators are linear unbiased estimators (30 分)

試題隨卷繳回