題號: 254

國立臺灣大學 105 學年度碩士班招生考試試題

科目:控制系統(B)

題號: 254

共 工 頁之第 /

節次: 4

Consider the unity feedback control problem of the mechanical system as shown in Fig.1.
 Please find the values of mass M and damper D to yield 20% overshoot and 2 seconds settling time. (25%)

Fig. 1

2. Consider a control system in Fig.2 where $D(s) = K_p + \frac{K_I}{s}$ is the controller and

$$G(s) = \frac{100}{s^2 + 10s + 100}$$
 is the plant.

- (a) Please find K_I such that the velocity constant of ramp input steady state error K_{ν} is 10. (10%)
- (b) Sketch the root locus of the characteristic equation with the value of K_I determined in (a) and for $0 \le K_p < \infty$. (15%)

Fig. 2

見背面

題號: 254

國立臺灣大學 105 學年度碩士班招生考試試題

科目:控制系統(B)

題號: 254 共 乙 頁之第 乙 頁

節次: 4 共

3. Consider a control system in Fig.3 where the controller K is a constant gain. All poles and zeros of the plant G(s) are on the left half plane. The plant G(s) has a gain of $20 \log_{10} 2$ dB at the only corner frequency $\omega = 1$ rad/sec. An asymptotic Bode gain plot of the plant G(s) has only two segments, such as low frequency asymptote with a slope of -60 dB/decade and high frequency asymptote with a slope of -20 dB/decade.

- (a) Please find the transfer function G(s) according to the asymptotic Bode gain plot. (10%)
- (b) Please sketch the Nyquist plot of the system and determine the range of K for the closed-loop system stability. (15%)

Fig. 3

4. Consider a state feedback control system as

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

$$y(t) = \mathbf{C}\mathbf{x}(t)$$
where $\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{C} = \begin{bmatrix} 3 & 1 & 0 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

- (a) Please find the gain matrix $\mathbf{K} = [k_1 \quad k_2 \quad k_3]$ of the state feedback controller $u = r \mathbf{K}\mathbf{x}$ so that the closed-loop transfer function of the system is $\frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 2}$, where R(s) and Y(s) are Laplace transform of r(t) and y(t). (15%)
- (b) Please discuss the controllability of the closed-loop control system. (10%)

試題隨卷繳回