題號: 62

國立臺灣大學103學年度碩士班招生考試試題

科目:近代物理學(A)

共 1 頁之第 1 頁

節次: 7

1. Explain why "cavity with a hole" (cavity radiation) emits the black-body radiation. (10%)

2. What is the Compton scattering? (The complete answer should include: the process (5%), the results (10%), and the implications (5%)).

FIG. 1. An 1D system of three identical quantum wells. ϕ_1 is an example of the wavefunction when the electron is at the well 1.

- 3. Consider an electron in an one-dimensional system of three identical quantum wells mounted on a substrate and separated equally by the distance r, as shown in Fig. 1. The electron, when residing at the well i, can be described by a wavefuction ϕ_i with an energy e_0 independent of r, as depicted in Fig. 1.—Since these three wells are identical, we assume that $e_0(<0)$ is the same for each well. However, ϕ_i are not the eigenfunctions, so the electron can "jump" between nearest-neighbor wells with a transfer integral $-\Delta(r) = -\alpha/r$, where $\alpha > 0$. Namely, the electron can transfer between well 1 and well 2, between well 2 and well 3, but not between well 1 and well 3.
 - (a) Compute the eigenvalues (15%) in terms of e_0 and $\Delta(r)$ and the corresponding eigenfunctions in terms of ϕ_i (15%).
 - (b) Draw all the eigenfunctions. (15%)
 - (c) At t=0, the electron is at well 1. Namely, the electron wavefunction $\Psi(0)=\phi_1$. What is the probability P(t) to find the electron at well 3 in the later time t? (5%) Plot P(t). (5%)
 - (d) Again, at t=0, the electron wavefunction $\Psi(0)=\phi_1$. At this moment, the energy is measured. Right after the energy is measured, what is the probability to find the electron at well 3 at t=0? (5%)
 - (e) The substrate actually feels a force due to the electron "jumping" between wells. Suppose that the electron is in the ground state, calculate the force. (5%) Is it attractive or repulsive? (5%)

試題隨卷繳回