55

國立臺灣大學 103 學年度碩士班招生考試試題

常微分方程

節次:

題號: 55 頁之第

頁

(a)
$$y' = \frac{x^3 + 3y^3}{x^2y}$$
.

1. (20 pts) Solve the equations.
(a)
$$y' = \frac{x^3 + 3y^3}{x^2y}$$
.
(b) $y' = \frac{3xy - x - x^3}{1 + x^2}$.

2. (20 pts) Find the general solution of the system

$$\mathbf{x}'(t) = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix} \mathbf{x}(t) + \begin{pmatrix} \sin t \\ 0 \end{pmatrix}.$$

3. (20 pts) Find the solution of the equation

$$\begin{cases} x^2y'' + 3xy' - 3y = 5 \ln x, \\ y(2) = 0, y'(2) = 1. \end{cases}$$

4. (20 pts) Supppose that y'(x) is continous for $x \in \mathbb{R}$. Find all solutions of

$$(y')^{2} + (e^{x} - x - 1)y' - x(e^{x} - 1) = 0.$$

5. (20 pts) Let

$$\phi_0(t) = 0, \quad \phi_{n+1}(t) = \int_0^t s\phi_n(s) ds + 2, \quad n = 0, 1, 2, 3, \cdots$$

- (a) Show that $0 \le \phi_n(t) \le 4$ for $0 \le t \le 1$. (b) Show that $\lim_{n\to\infty} \phi_n(t)$ exists for $0 \le t \le 1$. (c) Find $\lim_{n\to\infty} \phi_n(t)$ for $0 \le t \le 1$.