國立臺灣大學101學年度碩士班招生考試試題

題號: 343 科目:自動控制

節次: 2

共 2 頁之第 / 頁

1. The loop transfer function of a single-feedback-loop system is given as $L(s) = 0.1 K/[s(s+1)(s^2+s+1)]$. (1) Sketch the Nyquist plot of $L(j\omega)/K$ for $\omega = 0$ to $\omega = \infty$. [計分:8 分] (2) Determine the stability of the closed-loop system. [計分:2 分]

2. The block diagram of a control system is shown in **Fig. A**. Find the region in the *K*-versus- α plane for the system to be asymptotically stable. (Use *K* as vertical and α as the horizontal axis.)[計分:10 分]

3. The schematic diagram of a motor-load system is shown in **Fig. B**. The following parameters and variables are defined: $T_m(t)$ is the motor torque; $\omega_m(t)$, the motor velocity; $\theta_m(t)$, the motor displacement; $\omega_L(t)$, the load velocity; $\theta_L(t)$, the load displacement; K, the torsional spring constant; J_m , the motor inertia; J_L , the load inertia; B_m , the motor viscous-friction coefficient; and B_L , the load viscous-friction coefficient. (1) Write the torque equation of the system. [\Re]

(2) Using $x_1 = \theta_m - \theta_L$, $x_2 = d\theta_L/dt$, and $x_3 = d\theta_m/dt$, as state variables, plot the state diagram of the

system. 【計分:2分】(3) Find the transfer functions $\Theta_L(s)/T_m(s)$ and $\Theta_m(s)/T_m(s)$. 【計分:2分】(4) Find the characteristic equation of the system. 【計分:1分】(5) Let $T_m(t) = T_m$ be a constant applied torque; show that $\omega_m = \omega_L = \text{constant}$ in the steady state. Find the steady-state speeds ω_m and ω_L . 【計分:2分】(6)

Repeat part (5) when the value of J_L is doubled, but J_m stays the same. [計分:1分]

4. The schematic diagram of a feedback control system using a dc motor is shown in Fig. C. The torque developed by the motor is $T_m(t) = K_i I_a(t)$, where K_i is the torque constant. The parameters of the system are: $K_s = 2$; $R_a = 0.1 \Omega$; $R_s = 0.1 \Omega$; $K_b = 4.008 \text{ V/rad/sec}$; $K_i = 5 \text{ N-m/A}$; K = 2; $L_a \cong 0 \text{ H}$; $J_m + J_L = 0.1 \text{ N-m-sec}^2$; $B_m \cong 0 \text{ N-m-sec}$. Assume that all the units are consistent so that no conversion is necessary. (1) Let the state variables be assigned as $x_1 = \theta_y$ and $x_2 = d\theta_y/dt$. Let the output be $y = \theta_y$. Write the state equation in vector-matrix form. Show that the matrices A and B are in CCF (Controllability Canonical Form). [$\ddagger \uparrow \uparrow : 4 \uparrow$

5 A feedback control system is shown in the **Fig. D** (1) Let *a* =10, please find the root locus as K increases from 0 to ∞ 【計分:10分】(2) Let K=9, please find the root locus as *a* increase from 0 to ∞ 【計分:15分】

題號: 343

國立臺灣大學101學年度碩士班招生考試試題

科目:自動控制

節次: 2

共 2 頁之第 7 頁

Fig. D

- 6 If the transfer function of a system is $G(s) = \frac{1}{s^2 + 1.414s + 1}$, please sketch the unit step response and the bode plot of the system in as much detail as you can. (Assume the initial condition is zero) 【計分】
- 7 Fluid flows are common in many control systems. One of the physical relations governing fluid flow is continuity. The continuity relation is simply a statement of the conservation of matter:

$$\dot{h} = \frac{1}{A\rho} \left(w_{in} - w_{out} \right)$$

where ρ : density of water, h: height of water, A: area of tank, w_{in} : mass flow rate into the tank, w_{out} = mass flow rate out of the tank. Furthermore

$$w_{\text{out}} = \frac{1}{R} \sqrt{p_1 - p_a}$$

where R is a constant related to the type of restriction, $p_1 = pgh$ is the hydrostatic pressure, g: gravity constant, p_a is ambient pressure outside the restriction. Please determine the differential equation describing the height h of the water in the tank shown in Fig. E and linearize the dynamic equation around the operating point h_0 . (Note: $\Delta h = h - h_0$, $\Delta p = p_1 - p_0$ and $p_0 = pgh_0$) 【针分:10 分】

試題隨卷繳回