國立臺灣大學98學年度碩士班招生考試試題

科目:工程數學(L)

題號: 412

題號: 412 頁

共 4 頁之第

※ 注意: 請於「非選擇作答區」作答,選擇題不需列推演過程,計算或證明題須列過程, 請務必標示題號。

- 1. (4%) Let $S=\{1, 2, 3, 4, 5, 6\}$ and the probability p(s)=1/6 for all $s \in S$. Given four events E1={ 1, 2, 3}, E2={2, 4}, E3={4}, and E4={2, 3, 4, 5}, which of the following statement are correct
 - E1 and E3 are mutually independent, A.
 - E2 and E3 are mutually independent,
 - C. E1 and E4 are mutually independent,
 - E2 and E4 are mutually independent, or
 - None of above
- 2. (4%) A and B are playing a game as follow. First, A and B pick their own numbers uniformly from {1, 2, 3, 4, 5} and {1, 3, 8}, respectively. Assume that A's number (say a1) is smaller than or equal B's number (say b1), then A gets one dollar. Whoever gets one dollar (in this case, A) can pick a new number, say a2, for the next run using his uniform distribution. Whoever does not get one dollar (in this case, B) will use a new number b2=b1-a1 for the next run. The same rule applies to B. (Note that it is possible that both get one dollar in the same run). Let A and B play this game for an infinite number of time, what is the ratio of A's money and B's money at the end of the game?
 - 3:5
 - B. 3:4
 - C. 5:3
 - D. 5:4
 - Non of above
- 3. (4%) Let X1, X2, ... and Xn are independent and identical random variables with a CDF F(x). Let Z=min(X1, X2, ..., Xn). Then the PDF of Z can be represented as
 - A. $(dF(x)/dx)^n$
 - B. $F(x)^{n-1}dF(x)/dx$
 - C. $n*F(x)^{n-1}dF(x)/dx$
 - D. $n*[1-F(x)]^{n-1}dF(x)/dx$
 - None of above
- 4. (4%) Let $P(Y=y|X=x)=x^y/y!*e^x$ for y=0, 1, 2, and X is a zero mean Gaussian random variable with variance = 1. Then E[Y] =
 - $1/\sqrt{2\pi}$
 - $1/2\pi$
 - $\sqrt{2\pi}$ C.
 - 1/2 Đ.
 - None of above

5. (4%) The moment generating function M(s) of a Poisson random variable with mean = α is

A.
$$M(s) = \alpha e^{\alpha s}$$

B.
$$M(s) = e^{\alpha(e^s - 1)}$$

C.
$$M(s) = \alpha! e^{\alpha} (1 + e^{s})$$

D.
$$M(s) = e^{\alpha s + s + 1}$$

- E. None of above
- 6. (8%) X is a continuous random variable and is said to be memoryless if Pr(X=t1) = Pr(X =t1+t2|X>t2). Please find the PDF of such an X and show that it is indeed memoryless.
- 7. X is a random with a PDF such that Pr(X>x)=(x/c)^{-k} for all x≥ c, where c and k are both constants. Please find the mean and variance of X (7%). Please find a random variable X and its PDF such that X has a finite mean but an infinite variance (3%).
- Let X have a CDF F(x) and Y=F(X). Please find the PDF of Y (4%) and calculate Pr(Y > 0.6)
 (2%). If we have a uniform random variable generator, please show how to generate a random variable Z such that Z's pdf f(Z=z) is as shown in the figure below (6%).

國立臺灣大學98學年度碩士班招生考試試題

題號:412 科目:工程數學(L)

題號: 412 共 4 頁之第

9. (5%) For the given equation $\int_{0}^{t} f(\tau) f(t-\tau) = \Lambda(t) = \begin{cases} 1-|t|, & \text{for } |t| \leq 1 \\ 0, & \text{otherwise} \end{cases}$, please choose

the correct one answer

(A)
$$f(t) =\begin{cases} 1/2, & \text{for } |t| < 1/2 \\ 0, & \text{otherwise} \end{cases}$$
; (B) $f(t) =\begin{cases} 1/2, & \text{for } |t| < 1 \\ 0, & \text{otherwise} \end{cases}$; (C) $f(t) =\begin{cases} 1, & \text{for } |t| < 1 \\ 0, & \text{otherwise} \end{cases}$;

(D)
$$f(t) = \begin{cases} 1, \text{ for } |t| < 1/2 \\ 0, \text{ otherwise} \end{cases}$$
; (E) None of the above.

10. (5%) You can expand the function defined by $f(x) = x^2 + 3$, 0 < x < 3 in a Fourier series, a cosine series or a sine series. Please choose the correct answers

(A) f(6)=3 for sine series; (B) f(3)=12 for cosine series; (C) f(0)=3 for Fourier series;

(D)f(-1)=4 for Fourier series; (D)f(-3)=12 for cosine series.

11. (5%) Solve the initial value problem:

$$y'+y = f(t), y(0) = 5, \text{ where } f(t) = \begin{cases} 0, \text{ for } 0 \le t < \pi \\ 3\cos(t), \text{ for } t \ge \pi \end{cases}$$

Please choose the correct answers

(A)
$$y(t) = 5e^{-t}, 0 \le t < \pi$$
; (B) $y(t) = 5e^{-t} + \frac{3}{2}e^{-(t+\pi)}, 0 \le t < \pi$;

(C)
$$y(t) = 5e^{-t} + \frac{3}{2}e^{-(t+\pi)} + \frac{3}{2}\sin(t+\pi) + \frac{3}{2}\cos(t+\pi), t \ge \pi$$
;

(D)
$$y(t) = 5e^{-t} + \frac{3}{2}e^{-(t-\pi)} + \frac{3}{2}\sin(t) + \frac{3}{2}\cos(t), t \ge \pi$$
;

(E)
$$y(t) = 5e^{-t} + \frac{3}{2}e^{-(t-\pi)} + \frac{3}{2}\sin(t-\pi) + \frac{3}{2}\cos(t-\pi), t \ge \pi$$

12. (15%) Please solve the differential equation $(x^2 + 2xy - y^2)dx + (y^2 + 2xy - x^2)dy$

- (a) (3%) please verify that the differential equation is exact or not.
- (b) (5%) please show that the integrating factor $\mu(x, y) = (x + y)^{-2}$
- (c) (7%) please solve the differential equation.
- 13. (10%) As illustrated in the Figure 13, light rays strike a plane curve C in such a manner that all rays L parallel to the x-axis are reflected to a single point O.
 - (a) (5%) Assume that the angle of incidence is equal to the angle of reflection, determine a differential equation that describes the shape of the curve C.

[Hint: Please show that we can write $\phi=2\theta$ firstly.]

科目:工程數學(L)

題號: 412

共 4 頁之第 4 頁

(b) (5%) Please solve the differential equation to get the function describing the curve *C*.

14. (10%) In the paraxial approximation, the light ray trajectory is almost parallel to the z-axis. The light ray equation can be expressed as

$$\frac{d}{dz}\left(n\frac{dy}{dz}\right) = \frac{dn}{dy}, \frac{d}{dz}\left(n\frac{dx}{dz}\right) = \frac{dn}{dx}$$
 where $n = n(x, y, z)$ is the refractive index.

- (a) (2%) In a homogeneous medium where n is independent of x, y, z, please show that the light ray trajectory is a straight line.
- (b) (8%) Let a light ray be incident into a slab graded index medium, in which $n = n_0 (1 \alpha^2 y^2)$ with $\alpha^2 y^2 << 1$, at position $y = y_0$ and with an incidence angle $\frac{dy}{dz} \cong \theta_0$. Please show that with appropriate approximation the light ray trajectory is a periodic function as in Figure !4 and find the period.

試題隨卷繳回