1. (14%) Find the general solution.

(a)
$$\cos(x+y)dx + [3y^2 + 2y + \cos(x+y)]dy = 0$$

(b)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 4y = 1$$

2. (10%) Suppose that in Winter the daytime temperature in a certain office building is maintained at 70°F. The heating is shut off at 10 p.m. and turned on again at 6 a.m.. On a certain day the temperature inside the building at 2 a.m. was found to be 65°F and the outside temperature was about 45°F. What was the temperature inside the building when the heat was turned on at 6 a.m.?

(Hint: by Newton's law:
$$\frac{dT}{dt} = k(T - T_A)$$
)

3. (10%) Find the power series solution near x = 0

$$(x^2+4)\frac{d^2y}{dx^2} + xy = x+2$$

4. (6%) Find the inverse Laplace Transform

$$\frac{s-6}{(s-1)^2+4}$$

5. (10%) Show that

(a)
$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$$

If f is continuous for all $t \ge 0$ and satisfy the growth restriction and $\frac{df}{dt}$ is piecewise continuous on every

finite interval on the semi-axis $t \ge 0$

(b)
$$\mathcal{L}\left\{\frac{d\delta(t)}{dt}\right\} = s$$

where $\delta(t)$ = delta function

- 6. (14 %) If a vector field $\underline{F} = 2xy\underline{i} + (x^2 1/y)j \ (y \neq 0)$, C: the path connecting (1,3) and (2,2).
 - (a) Please show that \underline{F} is a conservative vector field. Since \underline{F} is a conservative vector field, there exists a potential function ϕ . Please also show the relationship between \underline{F} and ϕ .
 - (b) Please calculate ϕ and $\int_{C} \underline{F} \bullet d\underline{r}$.

題號:223

國立臺灣大學98學年度碩士班招生考試試題

科目:工程數學(E)

題號:223

共 2 頁之第 2 頁

7. (21 %) Consider $f(x) = \frac{x^2}{2}$ for $-\pi \le x \le \pi$,

- (a) Find the Fourier series of f(x)
- (b) Use the answer of (a) to evaluate the value of $\sum_{n=1}^{\infty} 1/n^2$.
- (c) Use the answer of (a) to evaluate the value of $\sum_{n=1}^{\infty} (-1)^n / n^2$.
- 8. (15%) Solve the following problem:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2} \qquad \text{for } 0 \le x \le 1$$

$$u(0,t) = u(1,t) = 0 \qquad \text{for } t \ge 0$$

$$u(x,0) = \frac{1}{2} \sin \pi x + \frac{1}{4} \sin 3\pi x \qquad \text{for } 0 \le x \le 1$$

$$\frac{\partial u}{\partial t}(x,0) = 0 \qquad \text{for } 0 \le x \le 1$$

試題隨卷繳回