國立臺灣大學98學年度碩士班招生考試試題

科目:高等微積分

頁之第

There are problems A to F with a total of 100 points. Please write down your computational or proof steps clearly on the answer sheets.

- A. (14 points) Evaluate the triple integral $\int_B e^{|x-a|} dx$, where $B = \{x \in \mathbf{R}^3 \mid |x| \le 1 \}$, and $a \in \mathbf{R}^3$ is a given point on the unit sphere, i.e. |a| = 1.
- B. (14 points) Prove that the 1-form $\omega = \frac{2(x^2-y^2-1)dy-4xydz}{(x^2+y^2-1)^2+4y^2}$ is a closed form. Then evaluate the line integral $\oint_{\gamma} \omega$, where γ is the cardiod curve in the plane defined by the polar equation $r=1+\cos\theta$ oriented by decreasing θ .
- C. (14 points) Let α be a positive constant. Determine whether the integral $\int_0^\infty \frac{(\sin x^2)(1-\cos x^2)}{x^\alpha} dx$ converges absolutely, or converges conditionally, or diverges.
- D. (14 points) Let $f: \mathbf{R}^n \to \mathbf{R}^n$ be continuously differentiable. Assume that f satisfies

$$|f(x)-f(y)| \ge C|x-y|$$
 for all $x,y \in \mathbb{R}^n$, where $C>0$ is some constant.

Prove that $f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ exists, and it is continuous. Must f^{-1} be differentiable?

- E. (14 points) Assume that $f_n: \mathbf{R} \to \mathbf{R}(n=1,2,3,\cdots)$ is a sequence of differentiable functions such that each $f_n(x)$ is a solution of the equation $y'(1+x^2+xy+y^2)=1$. If $\sup_n |f_n(\frac{1}{n})| < \infty$, prove that there exists a subsequence $f_{n_k}(x)$ such that $\lim_{k\to\infty} f_{n_k}(x) = f(x)$ exists for $x\in \mathbb{R}$. This limit f(x) must also be a solution of $y'(1+x^2+xy+y^2)=1$.
- F. Determine which of the following statements is true. Prove your assertion. Each has 6 points.
 - (a) For a subset $A \subset \mathbb{R}^n$, ∂A denotes its boundary. When A is bounded, $\partial(\partial A) = \partial A$ must
 - (b) Given a sequence $a_n \ge 0$ $(n = 0, 1, 2, \cdots)$. Then $\lim_{x \to 1} -\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n$.
 - (c) There exists no function u(x, y) which is C^2 in \mathbb{R}^2 , and satisfies

$$u(x,y) = 0$$
 on $x^2 + xy + y^2 = 1$, $u(x,y) \ge 0$ and $u_{xx} + u_{yy} = 1 + u^2$ for $x^2 + xy + y^2 < 1$.

- (d) Let all the partial derivatives of z = f(u, v) exist. Suppose that $u = \phi(x, y)$ and $v = \phi(x, y)$ $\psi(x,y)$ are differentiable. Then all partial derivatives of $z=f(\phi(x,y),\ \psi(x,y))$ exist, and $\frac{\partial z}{\partial x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}$.
- (e) Let f(x,y) be a bounded function defined on the rectangle $K = [0, 1] \times [0, 1]$. Then f is Riemann integrable in K iff both the iterated integrals

$$\int_0^1 \left(\int_0^1 f(x,y) dy \right) dx \quad \text{and} \quad \int_0^1 \left(\int_0^1 f(x,y) dx \right) dy$$

exist, and equal.

試題隨卷繳回