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(15%) In 1858 J. Waterston found a clever way to estimate molecular sizes from macroscopic
propetties of a liquid, by comparing its surface tension and heat of vaporization. The surface
tension of water, 5, is the work per unit area needed to create more free surface. To define it,
imagine breaking a brick in half. The two pieces have two new surfaces. Let 2 be the work
needed to create these new surfaces, divided by their total area. The analogous quantity for
liquid water is the surface tension. The heat of vaporization of water, Qvap, is the energy per
unit volume we must add to liquid water (just below its boiling point} to convert it completely
to steam (just above its boiling point). That is, the heat of vaporization is the energy needed to
separate every molecule from every other one. Picture a liquid as a cubic array with N
molecules per centimeter in each of three directions. Each molecule has weak attractive
forces to its six nearest neighbors. Suppose it takes energy € to break one of these bonds.
Then the complete vaporization of 1 cm3 of liquid requires that we break all the bonds. The
corresponding energy cost is Quap x (1 cm?). Next consider a molecule on the surface of the
fluid. It has only five bonds—the nearest neighbor on the top is missing (suppose this is a
fluid—vacuum interface). Draw a picture to help you visualize this situation. Thus to create more
surface area requires that we break some bonds. The energy needed to do that, divided by the
new area created, is 2.
(@) (5%) For water, Quap = 2.3 -10% J/m , while & = 0.072 J/m . Estimate N.
(b) (5%) Assuming the molecules are closely packed, estimate the approximate molecule
diameter.
(c) (6%) What estimate for Avogadro’s humber do you get?

(15%) The wave functions for a 1s and 2s orbitals in a hydrogen atom are 1s(r; 8, ¢)=N1exp(-

rfag) and zsft, 8, P)=Nz(2-r/aglexp(-r/2aqg), where ao is the Bohr radius and N1 and N2 are the

suitable normalization constants.

(a) (5%) Sketch wavefunction ¢, 8, ¢) and probability density |y, 6, ¢)I? of 1s and 2s orbitals
as a function of r along a particular direction, respectively.

(b} (5%) Sketch the radial distribution functions 4rr2|y(r; 8, ¢)|2 for 1s and 2s orbitals,
respectively.

(c) (5%) Sketch the wave function for an electron in the orbitals (j) 3s, (i) 3px, and (jii) 3dx?
Give the numbers of angular and radial nodes in each case.

(10%) Consider the molecules H2CCHz, H2CCCHz, and H2CCCCHs.
(@) (3%) Draw Lewis structures for these molecules.

(b) {3%) What is the hybridization at each C atom?

(c) (2%) What type of bond connects the carbon atoms (single, double, etc.)?
(d) (2%) Do all the hydrogen atoms lie in the same plane?

(15%) The equipartition theorem states that in thermal equilibrium, any degree of freedom
(such as a component of the position or velocity of a particle) which appears only quadratically
in the energy has an average energy of 1/2keT and therefore contributes 1/2kg to the system's
heat capacity.

(a) (8%) The kinetic energy of a particle of mass m free to undergo translation in three
dimensions is Ex=( 1/2)mv,2+(1/2)mvy2+(1/2)mv22 What is the average kinetic energy of a
particle free to move in three dimensions?

(b) (3%) Use the equipartition theorem to show that for a monatomic perfec:t gas: Em(T)=Em(0)
+ (3/2)RT, Cym=(3/2)R, where En(0) is the molar internal energy at T = 0, when all
translational motion has ceased.

(¢} (3%) When the gas consists of molecules, we need 1o take into account the effect of
rotation and vibration. A linear molecule, such as N2 and CQs, can rotate around two axes
perpendicular to the line of the atoms, so it has two rotational modes of motion, each
contributing a term 1/2kgT to the internal energy. Show that Em(T)=En(0) + (6/2)RT,
Cvm=(5/2)R {linear molecule, transiation and rotation only)
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(d) (3%) A non-linear molecute, such as CHs or Hz20, can rotate around three axes and, again.
cach mode of motion contributes a term 1/2ksT to the internal energy. Show that
Em(T)=Em(0) + 3RT, Cym=3R (non-linear molecule, translation and rotation only)

(e) {3%) Use the equipartition theorem to calculate the contribution of molecular motion to the
total energy of a sample of 10.0 g of (j) argon and (ji) carbon dioxide at 20°C. Hint: For (i),

take into account transiation and rotation but not vibration. Boltzmann constant:
kp=1.38x10-23 4 K1

5. (10%) Two patterns of packing for two different circles of the same size are shown here. For
each structure
(a) (3%) draw the two-dimensional unit cell; :
{b) (3%) determine the angle between the lattice vectors, y, and determine whether the lattice
vectors are of the same length or of different lengths;
(©) (4%) determine the type of two-dimensional lattice (Oblique, Square, Rectangular,
Hexagonal, Rhombic lattices).

6. (15%) Boltzmann formula, S= ks In(2 , says that the entropy of a macroscopic state is
proportional to the number of microstates of a system where all microstates are equiprobable.
Calculate the number of microstates and residual entropy of the following systems, in terms of
the ideal gas constant, R=Naks, (Na is Avogadro constant):

(@) (5%) A mole of monoxide crystal at T = OK, assuming that each molecule can have two
possible orientations CO or OC and also these two orientations have exactly the same
energy.

(b) (10%) A mole of ice crystal at T=0K. Assume that there are exactly two OH bonds and two
hydrogen bonds surrounding each oxygen atom as shown in the following figure, which
will be called the chemical condition. (Hints: For a mole of ice, there are 2N hydrogen
atoms. Along each O-H-O connection, the hydrogen can have possible choice of positions
along its O-O axis. There are 22V microstates. However, the positions of four hydrogen
atoms surrounding a particular oxygen atom are not independent. So you need to figure
out the fraction of microstates that satisfies the chemical condition.)
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7. (10%) Suppose we construct an electrochemical celi as shown in the following figure at the
standard state (Zn{Zn2+(1M)[[CI-(1M)|AgCi|Ag)). Assume that the extent of reaction is small
enough to keep the concentrations essentially unchanged. During the discharge, heat will

evolve from the resistor (R) and from the cell, and we would measure the heat change by
placing the cell and resistor in separate calorimeters. If we take Qc as the heat change in the
cell and Qr as that in the resistor, we find Qc + Qr = -233 kJ/mol independent of R. In the

limit of infinite R, O approaches -43 kd/mol and O, tends toward -190 kJ/mol.
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(a) (6%) What are the enthalpy, entropy and Gibbs energy changes of the reaction, Zn +

2AgCl — Zn2+ + 2Ag + 2CI-. _
(b) (4%) What is the maximal thermodynamic efficiency (i.e. converting the heat released to
non-PV work) of this electrochemical cell?

8. (10%) The rate of the reaction between hemoglobin (Hb) and carbon monoxide _(CO) was
studied at 20°C. The following data were collected, with all concentration units in umol/L. (A

hemoglobin concentration of 2.21 pmol/L is equal to 2.21x10-¢ mol/L.)

(@) (3%) Determine the orders of this reaction with respect to Hb and CO.
(b) (3%) Determine the rate law.

(c) (2%) Calculate the value of the rate constant.

(d) (2%) What would be the initial rate for an experiment with [Hb]o =3.36 pmol/L and

[COJo=2.40 pmol/L?
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