國立臺灣大學111學年度轉學生招生考試試題

題號: 15 科目:微積分(A) 題號: 15

共 / 頁之第 / 頁

• Any device with computer algebra system is prohibited during the exam.

- Each answer must be clearly labeled on the answer sheet.
- · You need to provide arguments for your answers.
- 1. (a) (5 pts) Assume that f'(a) > 0. Use the definition of derivative to prove that there is some $\epsilon > 0$ such that f(x) > f(a) for all $x \in (a, a + \epsilon)$.
 - (b) (15 pts) Suppose that f(x) is differentiable on an open interval containing [a, b] with $f'(a) \neq f'(b)$ and m is a constant between f'(a) and f'(b). Prove that there is some $c \in (a, b)$ such that f'(c) = m.
- 2. Let $\{f_n(x)\}$ be a sequence of continuous functions defined on [0,1]. Assume that $f_n(x)$ converges to f(x) uniformly on [0,1].
 - (a) (9 pts) Prove that f(x) is continuous on [0,1] and there is some M>0 such that $|f_n(x)| < M$ for all $x \in [0,1]$ and positive integer n.
 - (b) (6 pts) Prove or disprove $\lim_{n\to\infty}\int_0^{1-1/n}f_n(x)\ dx=\int_0^1f(x)\ dx.$
- 3. (a) (9 pts) Suppose that 1 < b < 2 is a fixed constant and

$$a_n = (1 - \frac{b}{2})(1 - \frac{b}{3}) \cdots (1 - \frac{b}{n})$$
, for $n \ge 2$.

Show that there are constants 0 < m < M such that $m < n^b a_n < M$ for all $n \ge 2$.

- (b) (6 pts) Show that for k > 0, the series $\sum_{n=1}^{\infty} \binom{k}{n}$ converges absolutely.
- 4. Suppose that f(x,y), g(x,y) have continuous second derivatives, and on the level curve g(x,y)=0, f(x,y) obtains a local extreme value at (1,2). Assume that at (1,2), $f_x=3$, $g_x=-1$, $g_y=\frac{1}{2}$, $f_{xx}=0$, $f_{xy}=1$, $f_{yy}=-2$, $g_{xx}=3$, $g_{xy}=0$, and $g_{yy}=1$.
 - (a) (2 pts) Find $f_y(1,2)$.
 - (b) (7 pts) When restricted to the curve g(x,y)=0, is f(1,2) a local maximum, local minimum, or saddle point?
 - (c) (6 pts) Suppose that on the curve $g(x,y) = 10^{-2}$, f(x,y) has a local extreme value at (x_1,y_1) which is close to (1,2). Estimate $f(x_1,y_1) f(1,2)$ by linear approximation.
- 5. (15 pts) Suppose that F(x, y, u, v) and G(x, y, u, v) have continuous first partial derivatives and equations F(x, y, u, v) = 0 and G(x, y, u, v) = 0 can be solved for x, y as functions of u, v. Express $\frac{\partial(x, y)}{\partial(u, v)}$ in terms of $\frac{\partial(F, G)}{\partial(u, v)}$ and $\frac{\partial(F, G)}{\partial(x, y)}$, where $\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$, $\frac{\partial(F, G)}{\partial(u, v)} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$, $\frac{\partial(F, G)}{\partial(x, y)} = \begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}$ are Jacobian determinants.
- 6. (20 pts) Let $F(x, y, z) = x^2 + 2y^2 3z^2$ and S be the level surface F(x, y, z) = 2 between z = 0 and $y \sqrt{3}z + 1 = 0$ with downward orientation. Compute $\iint_S \nabla F \cdot d\mathbf{S}$.

試題隨卷繳回