國立臺灣大學 114 學年度碩士班招生考試試題

題號: 43 科目:幾何 節次: 2

題號: 43 共 / 頁之第 / 頁

※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

- 1. [6%] Let $\gamma(t)$ be a geodesic on a regular surface S. $p = \gamma(0)$. Suppose $V \in S_p$ is an unit tangent vector which is perpendicular to $\gamma'(0)$. Describe the parallel transport of V along γ .
- 2. [6%] Let $S_1 = \{(x, y, 0) \mid x^2 + y^2 \ge 4\}$ and $S_2 = \{(\cos \theta, \sin \theta, z) \mid \theta \in \mathbb{R}, z \ge 1\}$. Let γ be the graph of the function z = f(x) such that $1 \le x \le 2$, f(1) = 1, and f(2) = 0. Define Ω as the surface of revolution generated by rotating γ about the z-axis. Suppose the union of S_1 , Ω , and S_2 forms a regular surface. What is the value of $\iint_{\Omega} KdA$?
- 3. [30%]Suppose $\gamma(s)$ is a regular closed space curve parametrized by arc length s. Let the surface S be defined by the parametrization $X(\theta, s) = \gamma(s) + \cos \theta \, \mathbf{n}(s) + \sin \theta \, \mathbf{b}(s)$, where $\mathbf{n}(s)$ and $\mathbf{b}(s)$ are the normal and subnormal vectors of $\gamma(s)$. Assume the curvature $\kappa(s)$ of γ satisfies $0 < \kappa(s) < 1$.
 - a. [6%] Show that S is a regular surface.
 - b. [6%] Compute $H(\theta, s)$ and $K(\theta, s)$.
 - c. [6%] Express the principal directions at every point of S using X_{θ} and X_{s} . Is there any umbilical point on S?
 - d. [6%] Define $\alpha_{s_0}(\theta)$ to be the curve $X(\theta, s_0)$. Is $\alpha_{s_0}(\theta)$ a line of curvature? Is $\alpha_{s_0}(\theta)$ a geodesic?
 - e. [6%] What is the Euler characteristic $\chi(S)$ of S?
- 4. [18%] Let p be a point on a surface S, and let $V \in S_p$ be a tangent vector. Let the curve $\gamma(s) \subset S$ be parametrized by arc length s, such that $\gamma(0) = p$ and $\gamma'(0) = V$. Define $\tau_g(V) = \langle N'(0), N(0) \times V_p \rangle$, where N(s) is the unit normal vector of S along $\gamma(s)$.
 - a. [6%] Show that $\tau_q(\mathbf{V})$ is well-defined, i.e. it is independent of the choice of the curve $\gamma(s)$.
 - b. [6%] If $\alpha(s)$ is a geodesic such that $\alpha(0) = p$ and $\alpha'(0) = V$, show that $\tau_g(V) = \tau(0)$, where $\tau(0)$ is the torsion of α at p.
 - c. [6%] Suppose $V = \cos \theta e_1 + \sin \theta e_2$, where e_i (i = 1, 2) are the principal directions at p, satisfying $|e_i| = 1$ and $e_1 \times e_2 = N_p$. Let κ_i (i = 1, 2) denote the corresponding principal curvatures. Prove that

$$\tau_g(\mathbf{V}) = (\kappa_1 - \kappa_2)\cos\theta\sin\theta.$$

- 5. [20%] Suppose S is a regular surface with non-zero mean curvature $H \neq 0$. It is stated that "the area of any compact domain contained in S decreases when the surface is deformed in the direction of HN," where N is the unit normal vector of S. Clarify the meaning of this statement and provide a proof.
- 6. [20%] If S is a regular surface without umbilical points and has constant Gaussian curvature K = 0, prove that S is (locally) a ruled surface.

**** You might need Mainardi-Codazzi equations:

$$\begin{cases} e_v - f_u &= e\Gamma_{12}^1 + f(\Gamma_{12}^2 - \Gamma_{11}^1) - g\Gamma_{11}^2 \\ f_v - g_u &= e\Gamma_{22}^1 + f(\Gamma_{22}^2 - \Gamma_{21}^1) - g\Gamma_{21}^2 \end{cases}$$