題號: 40 科目:代數

節次: 2

國立臺灣大學 114 學年度碩士班招生考試試題

題號: 40

共 頁之第 頁

(1) Let G be a finite abelian group of order m.

- (a) (10 %) Prove that for any positive integer d|m, there is a subgroup of order d.
- (b) (10 %) Give an example of a finite non-abelian group so that the above property does not hold.

(2) (10 %) Classify groups of order 21.

- (3) The goal of this problem to solve for $x^5 1 = 0$ by radicals.
 - (a) (15 %) Let $\zeta := e^{\frac{2\pi i}{5}}$ in \mathbb{C} . Show that $[\mathbb{Q}[\zeta] : \mathbb{Q}] = 4$ and verify your answer.
 - (b) (10 %) Let $u := \zeta + \zeta^{-1}$. Show that $[\mathbb{Q}[u] : \mathbb{Q}] = 2$ and determine the minimal polynomial of ζ over $\mathbb{Q}[u]$.

(4) (15 %) Find all elements $x \in \mathbb{Z}/2025\mathbb{Z}$ so that $x^5 = 1$.

- (5) In this problem, R denotes a commutative ring with identity with the extra properties that every ideal of R is finitely generated.
 - (a) (10 %) $\mathfrak{N} := \{x \in R | x^n = 0 \text{ for some } n\}$. Verify that \mathfrak{N} is an ideal of R. Prove that here is an integer m > 0 so that $\mathfrak{N}^m = 0$.
 - (b) (10 %) Let $f: R \to R$ be a ring homomorphism. Show that if R is surjective, then R is an isomorphism.
- (6) (10 %) Let K be an finite extension over F and D is an integral domain in between, that is, $F \subset D \subset K$. Prove that D is a field.

試題隨卷繳回