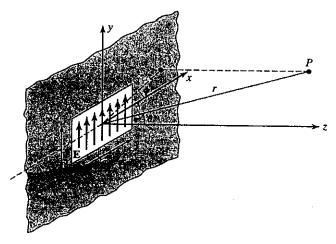
題號: 298

國立臺灣大學 114 學年度碩士班招生考試試題

科目:電磁學(C)

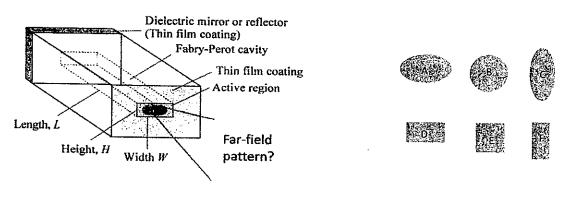
298


共 2 頁之第

節次: 7

※ 請於**答案卷上非選擇題作答區**標明題號作答。計算題請詳列過程。 $\varepsilon_0 = 10^{-9}/(36\pi)$ [F/m], $\mu_0 = 4\pi \times 10^{-7}$ [H/m]

1. (15% = 5%*3; 本大題為填充題, 過程不計分, 請於答案卷作答) A film with a refractive index n_f and thickness d_f is coated on a substrate with a refractive index n_s =3.24. A plane wave with a free-space wavelength λ =1440 nm is normally incident on the film.


- (a) If there is no reflection, $n_{f} = 0$ and $d_{f} = 0$ for maximum reflection.
- 2. (本大題共 25%) The figure below shows a rectangular aperture antenna with a uniform field distribution $E = \overline{E(x, y, 0)} = E_0 a_y$ across its aperture. Assume $r >> a, b > \lambda$, where λ is the free-space wavelength.

The far-field electric field at a point $P(r, \theta, \phi)$ is approximated as

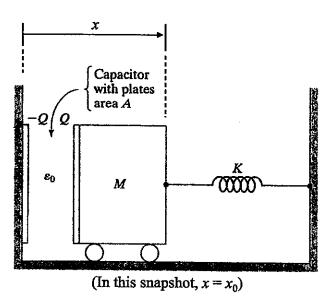
$$\overline{E}(r,\theta,\phi) \approx \frac{j\beta E_0 \exp(-j\beta r)}{2\pi r} \int_{x'=-a/2}^{a/2} \int_{y'=-b/2}^{b/2} E_0 \exp(j\beta \sin\theta (x'\cos\phi + y'\sin\phi)) dx'dy'.$$

- (a) (10%) Find the far-field at $\phi = 0$ $\left| \overline{E}(r,\theta,\phi) \right|_{\phi=0}$, and that at $\phi = 90^{\circ}$ $\left| \overline{E}(r,\theta,\phi) \right|_{\phi=90^{\circ}}$.
- (b) (10%) Using the results from (a), find their beam widths between the first nulls (BWFN), $[BWFN]_{\phi=0}$ and $[BWFN]_{\phi=90^{\circ}}$, in terms of a, b and λ .
- (c) (5%) The radiation from the facet of a semiconductor laser can be approximated as that of a rectangular aperture antenna, as shown in the figure on the left below. Using the results obtained in (b) and W > H, which of the patterns (A-F) in the figure on the right below would the far-field look like?

3. (10%) For a plane wave propagation in a uniform material medium with a refractive index $n = n(\omega)$, the phase constant is given by $\beta = \frac{\omega n}{c}$. Please show that $\frac{d^2 \beta}{d\omega^2} = -\frac{\lambda_0}{c} \frac{d^2 n}{d\lambda_0^2} \frac{d\lambda_0}{d\omega}$ at a wavelength λ_0 .

題號: 298

科目:電磁學(C)


國立臺灣大學 114 學年度碩士班招生考試試題

題號: 298

共 2 頁之第 2 頁

節次: 7

- ※ 請於答案基上非選擇題作答區標明題號作答。計算題請詳列過程。 $ε_0 = 10^{-9}/(36\pi)$ [F/m], $μ_0 = 4\pi \times 10^{-7}$ [H/m]
- 4. (本大題共 25%) Consider a uniform plane wave propagating in free space. The electric field of the wave is $\mathbf{E} = E_0 \cdot \cos(20\pi \times 10^{12} t \beta \times y)$ a_x. The speed of light in free space is 3×10^8 m/s.
 - (a) (5%) In which direction is the wave propagating? Choose one among +x, -x, +y, -y, +z, and -z.
 - (b) (5%) Find β (in rad/m)?
 - (c) If this wave enters a medium which has a refractive index of n = 1.5, find the phase velocity (5%), wavelength (5%), and frequency f in Hz (5%) of the wave in this medium.
- 5. (本大意共 25%) In the system shown below, the mass M is set in motion in the following manner: (1) the mass is brought to rest at the equilibrium position $x = x_0$ with no charge on the capacitor plates; (2) the mass is constrained to that position and the capacitor plates are charged to $\pm Q$ as shown in the figure; and (3) the mass is released, thereby permitting frictionless motion. Obtain the differential equation for x (10%) and find the solution as a function of time t (15%).

試題隨卷繳回