題號: 253

節次:

國立臺灣大學 114 學年度碩士班招生考試試題

科目: 應用力學(B)

題號:253

共1頁之第1頁

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

- 1. [15 points] Define and describe the following terms:
 - (1) Statically indeterminate. (2) Polar moment of inertia. (3) Instantaneous center of rotation.
- 2. [15 points] (1)(2) Multiple-choice questions and (3) short-answer question.
 - (1) How many zero-force members are in the right structure? (a) 0 (b) 2 (c) 3 (d) 4.
 - (2) A rectangular plate swings from arms of equal length as shown below. What is the magnitude of the angular velocity of the plate? (a) 0 rad/s (b) 1 rad/s (c) 2 rad/s (d) 3 rad/s (e) Need to know the location of the center of gravity
 - (3) Block A is released from rest and slides down the frictionless ramp to the loop. The maximum height h of the loop is the same as the initial height of the block. Will A make it completely around the loop without losing contact with the track? Why?

- 3. [15 points] A 6.5-m ladder AB leans against a wall as shown. Determine the smallest value of μ_s at A for which equilibrium is maintained under the following two conditions: (1) the coefficient of static friction μ_s is zero at B; (2) the coefficient of static friction μ_s is the same at A and B.
- 4. [15 points] A counterclockwise moment $M = 150 \text{ N} \cdot \text{m}$ is applied to the flywheel. If the coefficient of friction between the band and the wheel is 0.2, compute the minimum force P necessary to prevent the wheel from rotating.
- 5. [20 points] At the instant under consideration, the rod of the hydraulic cylinder is extending at the rate $v_A = 2$ m/s. Determine the corresponding (1) angular velocity and (2) angular acceleration of link OB.
- 6. [20 points] The system shown is in equilibrium when $\varphi = 0^{\circ}$.
 - (1) What is the spring length when it is unstretched?
 - (2) What is the δ_{spring} when $\varphi = 90^{\circ}$? (3) If the initial $\varphi = 90^{\circ}$, block C is given a slight nudge when the system is in that position. Determine the speed of the block as it passes through the equilibrium position $\varphi = 0$. Neglect the weight of the rod.

