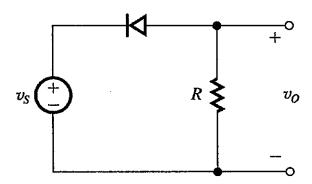
題號: 2

節次:

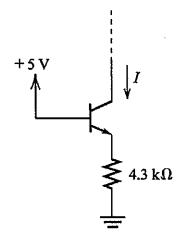
249

國立臺灣大學 114 學年度碩士班招生考試試題

科目: 電子學(B)


題號: 249

共 1 頁之第 1 頁


1. (7%) What is harmonic distortion? What causes it?

2. (8%) What is the CMRR? For what types of application is it important?

- 3. (15%) Consider the half-wave rectifier circuit shown on the right. Let v_S be a sinusoid with 10-V peak amplitude, and let $R=1~\mathrm{k}\Omega$. Use the constant-voltage-drop diode model with $V_D=0.7~\mathrm{V}$.
 - (a) Sketch the transfer characteristic.
 - (b) Sketch the waveform of v_0 .
 - (c) Find the average value of v_0 .
 - (d) Find the peak current in the diode.
 - (e) Find the PIV of the diode.

- 4. (15%) Suppose we have an NMOS transistor that has $g_m = 2$ mS and $r_d = 5$ k Ω for a Q point of $V_{GSQ} = 2$ V, $I_{DQ} = 4$ mA, and $V_{DSQ} = 10$ V. Sketch the drain characteristics to scale for a small region around the Q point, say, for $v_{GS} = 1.8$, $v_{GS} = 2.0$, $v_{GS} = 2.2$ V and for $9.0 < v_{DS} < 11.0$ V.
- 5. (15%) For the constant-current source circuit shown on the right, find the collector current I and the output resistance. The BJT is specified to have $\beta = 100$, $V_{BE} = 0.7$ V, and $V_A = 100$ V. If the collector voltage undergoes a change of 10 V while the BJT remains in the active mode, what is the corresponding change in collector current?

- 6. (20%) An op amp with bandwidth $f_t = 20$ MHz, slew rate SR = 10 V/ μ s, and output saturation $V_{omax} = 10$ V is used in the design of a noninverting amplifier. The nominal gain of the noninverting amplifier is 10. Assume a sine-wave input with peak amplitude V_i .
 - (a) If $V_i = 0.5$ V, what is the maximum frequency before the output distorts?
 - (b) If f = 200 kHz, what is the maximum value of V_i before the output distorts?
 - (c) If $V_i = 50$ mV, what is the useful frequency range of operation?
 - (d) If f = 50 kHz, what is the useful input voltage range?
- 7. (20%) There is a three-input CMOS NAND gate.
 - (a) Draw the circuit diagram of the NAND gate.
 - (b) Draw its equivalent circuit (open and closed switches) if all inputs are high.
 - (c) Redraw (b) if all inputs are low.

試題隨卷繳回