題號: 50

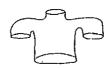
國立臺灣大學 112 學年度碩士班招生考試試題

科目:幾何節次:2

題號: 50 共 | 頁之第 | 頁

1. (10 pts) Let $\gamma(s) : [0, L] \to \mathbb{R}^2$ be a regular curve with $||\gamma'(s)|| = 1$. Assume that its curvature satisfies $\kappa(s) > 0$. Let l > 0 and define $\alpha(s) = \gamma(s) + (l-s)\gamma'(s)$, for 0 < t < l. Show that α is a regular curve, and compute its curvature.

2. (15 pts) For a space curve in \mathbb{R}^3 , we use the convention of the Frenet frames that satisfy


$$T'(s) = \kappa(s)N(s), N'(s) = -\kappa(s)T(s) + \tau(s)B(s), B'(s) = -\tau(s)N(s).$$

Determine whether or not there exists a smooth unit-speed curve $\beta:(0,1)\to \mathbf{R}^3$ such that $\kappa(s)>0$ for all $s\in(0,1)$ and such that the unit binormal satisfies $B''(s)=s^3T(s)+4B(s)$.

- 3. Let S be a surface of revolution with parametrization $\psi(u,v) = (\phi(u)\cos v, \phi(u)\sin v, u)$ where $\phi(u)$ is smooth and positive..
 - (a) (10 pts) Find the principal directions, mean curvature and compute the Gaussian curvature K(u,v) for any point $p=\psi(u,v)$.
 - (b) (5 pts) Show that any meridian curve $(v = v_0)$ is a geodesic.
 - (c) (5 pts) Show that a parallel curve $(u=u_0)$ is a geodesic if and only if $\phi'(u_0)=0$.
- 4. Let $S^2=\{(x,y,z)\in\mathbf{R}^3: x^2+y^2+z^2=1\}$ be the unit sphere. Let

$$\omega = \begin{cases} \frac{dy \wedge dz}{x} & \text{if } x \neq 0; \\ \frac{dz \wedge dx}{y} & \text{if } y \neq 0; \\ \frac{dx \wedge dy}{z} & \text{if } x \neq 0. \end{cases}$$
 (1)

- (a) (7 pts) Show that ω is a well defined two form on S^2 .
- (b) (7 pts) Find $\int_{S^2} \omega$
- (c) (6 pts) Is ω exact? Why?
- 5. Let S be a smooth, compact, orientable surface in \mathbb{R}^3 .
 - (a) (10 pts)) Show that the Gauss map $N: S \to S^2$ is surjective.
 - (b) (10 pts)) Let K(p) be the Gaussian curvature of S at p and $K_+(p) = \max\{0, K(p)\}$. Show that $\int_S K_+ dA \ge 4\pi$.
- 6. (15 pts) What is the integral of the Gaussian curvature of the following surface? You may assume that the boundary curves are geodesics.

