題號: 348

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 數學(A) 節次: 4

題號: 348

共 ユ 頁之第 | 頁

※ 注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

1. (10%) Which one of the following graphs has no Hamiltonian cycles?

- 2. (10%) _____ Which solves $a_n = -a_{n-1} + 6 a_{n-2}$ for a_n in terms of $a_0 = A$ and $a_1 = B$:

 (A) $\frac{1}{5}[(-3)^n(2A B) + 2^n(3A + B)]$ (B) $\frac{1}{5}[(-3)^n(2A B) + 2^n(3A B)]$ (C) $\frac{1}{5}[(-2)^n(3A B) + 3^n(2A + B)]$ (D) $\frac{1}{5}[(-2)^n(3A + B) + 3^n(2A + B)]$ (E) $\frac{1}{5}[(-2)^n(3A B) + 3^n(2A B)]$
- 3. (10%) _____ The generating function in partial fraction decomposition for the recurrence equation $a_n = a_{n-1} + 6 a_{n-2}$ for a_n in terms of $a_0 = A$ and $a_1 = B$ is:

 (A) $\frac{1}{5} \left[\frac{2A+B}{1-3x} + \frac{3A-B}{1+2x} \right]$ (B) $\frac{1}{5} \left[\frac{2A+B}{1-3x} + \frac{3A+B}{1+2x} \right]$ (C) $\frac{1}{5} \left[\frac{2A-B}{1-3x} + \frac{3A-B}{1+2x} \right]$ (D) $\frac{1}{5} \left[\frac{3A-B}{1-2x} + \frac{2A-B}{1+3x} \right]$ (E) $\frac{1}{5} \left[\frac{3A+B}{1-2x} + \frac{2A-B}{1+3x} \right]$
- 4. (10%) _____ The number of non-negative integer solutions of $x_1 + x_2 + \cdots + x_4 \le 7$ equals (A) 210 (B) 330 (C) 35 (D) 7 (E) 120
- 5. (10%) If $|A| = 2^4$ and $|B| = 2^3$, how many functions from A to B are there? (A) 2^7 (B) 2^{12} (C) 2^{32} (D) 2^{48} (E) 2^{316}

For problems 6-11, each problem may have multiple answers. Credits will be given only if all the answers are selected correctly.

- 6. (10%) Given $A = \begin{bmatrix} \frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{3}{5} \end{bmatrix}$ and $x = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. If $\lim_{n \to \infty} A^n x = \begin{bmatrix} a \\ b \end{bmatrix}$, what is 2a + b?

 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
- 7. (10%) Given a linear transformation $T: P_2(R) \to P_2(R)$ defined by T(f(x)) = f''(x) + 2f'(x) f(x),

where $P_2(R)$ represents the real-valued 2^{nd} -order polynomials. Assume M is the matrix representation of T with respect to the ordered basis. Please find the determinant of $(M^{-1} + 2I)$, where I is the identity matrix with the same dimension as M. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

- 8. (10%) Assume that A, B, and C are $n \times n$ matrices.
 - $(A) \operatorname{trace}((A+B)C) = \operatorname{trace}(AC) + \operatorname{trace}(BC)$
 - (B) trace(AB) = trace(A)trace(B)
 - (C) trace(AB)=trace(BA)
 - (D) Given a 2×2 matrix, $\begin{bmatrix} a & b+c \\ b-c & -a \end{bmatrix}$ with trace zero has real eigenvalues if $a^2+b^2 \ge c^2$.
 - (E) Suppose a 2×2 matrix other than the identity matrix satisfies $A^3 = I$. Then we have trace(A) = 1.

見背面

題號: 348

國立臺灣大學 112 學年度碩士班招生考試試題

科目:數學(A) 節次: 4

題號: 348

共 2 頁之第 2 頁

9. (5%) Let S, D, and $Q \in M_n(R)$ represent a symmetric matrix, a diagonal matrix and an orthogonal matrix. Assume that their degree of freedom are d_S , d_D and d_Q , respectively. Find the value of $d_S - d_D - d_Q$.

- (A) 0 (B) 1 (C) 2 (D) 3 (E) 4
- 10. (5%) Let $A \in M_{n \times n}$, which of the following statements are true?
 - (A) The nullspace of A is the same as the nullspace of A^TA .
 - (B) If A is orthogonal, $A + \frac{1}{2}I$ is invertible.
 - (C) If A has fewer than n distinct eigenvalues, then A is not diagonalizable.
 - (D) If $A = A^T$, then its eigenvalues are real and eigenvectors are orthogonal.
 - (E) If A is positive definite, we can always find a nonsingular U such that $A = U^2$.
- 11. (10%) Let T be a self-adjoint operator on a finite-dimensional inner product space V with distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$. Let E_i be the eigenspace of T corresponding to λ_i , and let T_i be the orthogonal projection of V on E_i , $1 \le i \le k$.
 - (A) $\sum_{i=1}^k \lambda_i T_i = T$
 - (B) $V = E_1 \oplus E_2 \oplus ... \oplus E_k$
 - (C) Given any polynomial g, $g(T) = g(\lambda_1)T_1 + g(\lambda_2)T_2 + \cdots + g(\lambda_k)T_k$.
 - (D) $\lambda_1, \lambda_2, ..., \lambda_k$ are all real numbers.
 - (E) If T(x) = Ax, where $x \in \mathbb{C}^n$, then A is diagonalizable.

試題隨卷繳回