題號: 341

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 微分方程(B)

題號:341

共 4 頁之第 1 頁

節次: 6

For the following problems, assume: $y' = \frac{dy}{dx}$ and $y' = \frac{d^2y}{dx^2}$

1.(10%)The following differential equation can be classified as:

$$xy' + xy + 2y = x^2e^{-x}$$

- A. linear homogenous
- B. linear nonhomogenous
- C. nonlinear homogenous
- D. nonlinear nonhomogenous
- E. cannot determine

2.(10%)For the following differential equation, x=-3 is which type of point?

$$(x^2 + x - 6)y' + (x + 3)y' + (x - 2)y = 0$$

- A. ordinary
- B. regular singular
- C. irregular singular
- D. none of these

 β .(10%)Which is a solution of the following differential equation on interval (-5, 5)?

$$\frac{dy}{dx} = -\frac{x}{y}$$

A.
$$x^2 + y^2 = 25$$
, $-5 < x < 5$

B.
$$y = \sqrt{25 - x^2}$$
, $-5 < x < 5$

c.
$$y = -\sqrt{25 - x^2}$$
, $-5 < x < 5$

- D. all of the above
- E. none of these

節次:

4.(10%) Which is a solution to the following differential equation?

$$y' + y = 0$$

$$A. y = 0$$

B.
$$y = e^{-x}$$

C.
$$y = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$$

- D. both A and B
- E. all of the above

5.(10%) Which is the general solution to the following differential equation?

$$y'' - 3y' + 3y' - y = 0$$

Assume c_1 , c_2 , and c_3 are arbitrary constants.

A.
$$y = c_1 e^x + c_2 e^x + c_3 e^x$$

B.
$$y = c_1 e^x + c_2 e^{x+1} + c_3 e^{x+2}$$

C.
$$y = c_1 e^x + c_2 x e^x + c_3 x^2 e^x$$

D.
$$y = c_1 e^x + c_2 \ln x e^x + c_3 (\ln x)^2 e^x$$

E. none of these

6.(10%)Which is the general solution to the following differential equation?

$$x^2y'-2xy'-4y=0$$

Assume c_1 and c_2 are arbitrary constants.

A.
$$y = e^x [c_1 \cos(\sqrt{5} x) + c_2 \sin(\sqrt{5} x)]$$

B.
$$y = c_1 e^{-x} + c_2 e^{4x}$$

C.
$$y = x [c_1 \cos(\sqrt{5} \ln x) + c_2 \sin(\sqrt{5} \ln x)]$$

D.
$$y = c_1 x^{-1} + c_2 x^4$$

E. none of these

接次頁

341

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 微分方程(B)

題號:341

共 4 页之第 3 页

節次:

7.(10%)Which is the general solution to the following differential equation?

$$2y' - 8y = 0$$

Assume c_1 and c_2 are arbitrary constants.

A.
$$y = c_1 \cos(2x) + c_2 \cos(2x)$$

B.
$$y = c_1 \cosh(2x) + c_2 \cosh(2x)$$

C.
$$y = c_1 \cos(2x) + c_2 \sin(2x)$$

D.
$$y = c_1 \cosh(2x) + c_2 \sinh(2x)$$

E. none of these

8.(10%)Which is the general solution to the following differential equation?

$$\frac{d^4y}{dx^4} + 2\frac{d^2y}{dx^2} + y = 0$$

Assume c_1 , c_2 , c_3 , and c_4 are arbitrary constants.

A.
$$y = c_1 \cos(x) + c_2 \sin(x) + c_3 \cos(-x) + c_4 \sin(-x)$$

B.
$$y = c_1 \cos(x) + c_2 \sin(x) + c_3 x \cos(x) + c_4 x \sin(x)$$

C.
$$y = c_1 \cos(x) + c_2 \sin(x) + c_3 e^x \cos(x) + c_4 e^x \sin(x)$$

D.
$$y = c_1 \cos(x) + c_2 \sin(x) + c_3 e^{-x} \cos(x) + c_4 e^{-x} \sin(x)$$

E. none of these

見背面

國立臺灣大學 112 學年度碩士班招生考試試題

科目: 微分方程(B)

題號:341

共 4 页之第 4 页

9.(10%)For the following differential equation on the interval (0, ∞):

$$2xy' + (1+x)y' + y = 0$$

which of the following equations are solutions?

A.
$$y = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n} x^n$$

B.
$$y = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} x^{(n+1/2)}$$

C.
$$y = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{1 \cdot 3 \cdot 5 \cdot 7 \cdots (2n-1)} x^n$$

- D. Both A and B
- E. Both B and C

10.(10%)Which is the general solution to the following differential equation?

$$y' + y = 4x + 10\sin(x)$$

Assume c_1 and c_2 are arbitrary constants.

A.
$$y = c_1 \cos(x) + c_2 \sin(x) + 4x$$

B.
$$y = c_1 \cos(x) + c_2 \sin(x) + 4x - 5 \sin(x)$$

C.
$$y = c_1 \cos(x) + c_2 \sin(x) + 4x - 5 \cos(x)$$

D.
$$y = c_1 \cos(x) + c_2 \sin(x) + 4x - 5x \sin(x)$$

E.
$$y = c_1 \cos(x) + c_2 \sin(x) + 4x - 5x \cos(x)$$

試題隨卷繳回