題號: 296 國立臺灣大學 112 學年度碩士班招生考試試題

 科目: 線性代數(C)
 題號: 296

 節次: 1
 共1頁之第1頁

1. Let W be the subspace of \mathbb{R}^4 spanned by the vectors $u_1 = (1, -2, 5, -3), u_2 = (2, 3, 1, -4), u_3 = (3, 8, -3, -5).$

- (a) Find the basis and dimension of W. (8%)
- (b) Extend the basis of W to a basis of \mathbb{R}^4 . (7%)
- 2. Show that $\begin{bmatrix} \sin^2 \alpha & \sin^2 \beta & \sin^2 \gamma \\ \cos^2 \alpha & \cos^2 \beta & \cos^2 \gamma \\ 1 & 1 & 1 \end{bmatrix}$ is not invertible for any values of α , β , and γ . (5%)
- 3. Suppose an operator matrix is $\begin{bmatrix} 51 & -12 & -21 \\ 60 & -40 & -28 \\ 57 & -68 & 1 \end{bmatrix}$. If 48 and 24 are eigenvalues of this matrix, find the third eigenvalue. (5%)
- 4. Find the volume V(S) of the parallelepiped S in \mathbb{R}^4 determined by the following vectors. $u_1 = (1, -2, 5, -1), u_2 = (2, 1, -2, 1), u_3 = (3, 0, 1, -2), u_4 = (1, -1, 4, -1).$ (5%)
- 5. Given $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$, find $\exp(A)$. (10%)
- 6. Let $A = \begin{bmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 4 \\ 2 & -3 & 5 \end{bmatrix}$. The characteristic polynomial of both matrices is $\Delta(t) = (t-2)(t-1)^2$.

Find the minimal polynomial m(t) of each matrix. (20%)

- 7. Let $A = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 7 & -5 \\ 2 & -5 & 8 \end{bmatrix}$. Find a non-singular matrix P such that $D = P^T A P$ is diagonal (10%), and the signature of A (10%).
- 8. The vectors $u_1 = (1,1,0)$, $u_2 = (1,2,3)$, $u_3 = (1,3,5)$ form a basis for Euclidean space \mathbb{R}^3 . Find the matrix A that represents the inner product in \mathbb{R}^3 relative to this basis S. (10%)
- 9. Find an orthogonal matrix P whose first row is $u_1 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$. (10%)

試題隨卷繳回