題號: 363 節次: ## 國立臺灣大學 111 學年度碩士班招生考試試題 科目: 近代物理學(B) 題號:363 共2頁之第1頁 Light of wavelength 310 nm and intensity 1 W/m² is directed at a lithium surface with the work function of 2.5 eV. (4%) (a) Find the maximum kinetic energy of the photoelectrons (b) If 1% of the incident photons produce photoelectrons, how many are emitted per second if the lithium surface has an area of 1 cm²? (4%) - 2. Consider a moving electron with energy of 20-MeV experiences a magnetic field of 100 gauss perpendicular to its moving direction. What is the approximate radius of the path of this electron in this magnetic field? (8%) - 3. Considering two stars in the universe, surface temperature of star A and star B are 3000 K and 6000 K respectively. And power radiated by star A is 100 times higher than that by star B. What is the size ratio of star A and star B? (8%) - 4. Considering an excited quantum dot emits a photon with the wavelength of 600 nm within 1 ns following excitation. What is the minimum uncertainty in (3) energy (4%), and (b) wavelength of the emitted photon? (5%) - 5. Calculate the expectation value for the first excited state of a harmonic oscillator. (7%) - 6. A particle limited to the x axis has the form of $\Psi = \cos \frac{\pi x}{2}$ between x= -1 to +1. $\Psi = 0$ elsewhere. (1) Please find the probability that particle can be found between x=-0.4 to 0.6. (5%) (2) Find the expectation value of $\langle x \rangle$ of the particle's position (-1 to 1). (5%) - 7. For 3D confinement like a Quantum dot, an electron in box with size of 1nm, please find the permitted lowest energy (10%). Infinite barrier assumption - 8. Zeeman effect: The magnetic field will split energy state for $l \neq 0$. With 0.3T magnetic field (1) What is the energy separation of Zeeman components? (5%) - 9. (1) Please write down the Plank radiation formula. (5%) (2) at 1000K blackbody. What is the "photon number density" at 6000k for photon energy hv = 2eV in the unit of $1/m^3/eV$. (5%) $C = 3x10^8 \text{ m/s}$ Electron mass= 9.1 x 10⁻³¹ kg Electron charge= 1.6 x 10⁻¹⁹ C Planck's constant= 6.626 x 10⁻³⁴ Js - 10. Consider the bipolar junction transistor (BJT) circuit shown in Fig. 1. - (a) (5%) Compare the i_c - V_{CE} characteristics (for different V_{BE}) with and without the Early effect (draw the curves on the same figure). - (b) (5%) Explain the physical origin of the Early effect in details. 題號: 363 國立臺灣大學 111 學年度碩士班招生考試試題 科目: 近代物理學(B) 共2頁之第2頁 題號:363 節次: 8 11. For the circuit shown in Fig. 2, $\mu_n C_{ox} = 20 \,\mu A/V^2$, $\mu_p C_{ox} = 5 \,\mu A/V^2$, $V_{tn} = 1 \,\text{V}$, $V_{tp} = -1 \,\text{V}$, $W = 100 \,\mu m$ and $L = 1.6 \,\mu m$. Where μ_n and μ_p are the electron mobility and hole mobility, respectively. C_{ox} is the capacitance per unit area. V_{tn} and V_{tp} are the threshold voltages of n-channel and p-channel devices, respectively. W and L are the channel width and length, respectively. - (a) (8%) Find I_1 and V_2 in Fig. 2(a). Neglect the channel length modulation effect. - (b) (7%) Consider the circuit in Fig. 2(b). Find the small-signal voltage gain. Assume $V_{DD}=10~V$, $I_{REF}=100~\mu A$, $V_{An}=80~V$ and $|V_{Ap}|=120~V$, and Q_2 and Q_3 are matched. Where V_{An} and V_{Ap} are the Early voltages of n-channel and p-channel devices, respectively. v_i and v_o are the input and output voltages, respectively. Fig. 2 ## 試題隨卷繳回