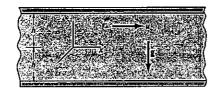
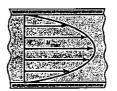
國立臺灣大學 111 學年度碩士班招生考試試題


單操與輸送


308

節次: 共2頁之第1頁

Problem 1. (20%)

Consider an incompressible Newtonian fluid flowing through a gap (height = 2 h) between two parallel plates. The fully developed laminar flow velocity profile u(y) can be determined by solving the x-component Navier-Stokes equation, where u, v, and w are fluid velocity components along x, y, and z direction, respectively.

題號:308

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

- (a) Explain that the above equation is a result of momentum balance. (5%)
- (b) Prove the velocity profile below. (5%)

$$u = \frac{1}{2\mu} \left(\frac{\partial p}{\partial x} \right) (y^2 - h^2)$$

- (c) Show that the volume rate of flow is proportional to h^3 . (5%)
- (d) Use a schematic to illustrate how the velocity profile u(y) changes for turbulent flow. (5%)

Problem 2. (20%)

- (a) Explain fluid friction loss from the Bernoulli equation. (5%)
- (b) Write down the physical significance and unit of the Fanning friction factor as defined below. (5%)

$$f \equiv \frac{\tau_w}{\rho \bar{V}^2/2}$$

(c) Justify the following equation for a laminar pipe flow, where Δp_s is the pressure drop due to skin friction, τ_w is the shear stress at the wall of the pipe, D is diameter of the pipe, and L is the length of the pipe. (5%)

$$\Delta p_s = 4(\tau_w/D) \cdot L$$

(d) Use a schematic to compare how f varies with Re for laminar flow and turbulent flow, respectively. (5%)

Problem 3. (20%)

Consider that a thick beef steak is being baked on a hot plate with a surface temperature T_S . Before baking, the raw beef steak is placed at room temperature (T_O) for a sufficient long while, so the temperature distribution is uniform throughout the raw steak initially. Here we only model the first-stage of steak baking (i.e., without flipside), and the steak thickness is sufficiently large so that the following semi-infinite transient heat conduction model can be applied.

$$\frac{T - T_0}{T_S - T_0} = \operatorname{erfc}\left(\frac{x}{\sqrt{4\alpha t}}\right)$$

題號: 308

國立臺灣大學 111 學年度碩士班招生考試試題

科目:單操與輸送

題號: 308 共 2 頁之第 2 頁

節次: 2

(a) Write down the physical meaning and SI unit of α in the above equation. (5%)

- (b) Give the partial differential equation and related initial and boundary conditions for obtaining the above temperature profile model. (5%)
- (c) Use a schematic to compare the temperature profiles T(x) at small, middle, and large time t. (5%)
- (d) Determine the heat flux required as a function of time q(t) to bake the steak. (5%)

Problem 4. (20%)

- (a) Derive the Fick's second law from the Fick's first law. (7%)
- (b) Below is the Einstein diffusion equation.

$$c(x,t) = \frac{c_0}{\sqrt{4\pi Dt}} exp\left(\frac{-x^2}{4Dt}\right)$$

Show that the mean squared displacement of a molecule for one-dimensional diffusion is 2Dt. The following expoential integrals are useful. (7%)

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}} \qquad \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx = \frac{1}{2a} \sqrt{\frac{\pi}{a}}$$

(c) For sucrose in water at 25 °C, D = 5 x 10^{-6} cm²·s⁻¹. Assume that in a region of an unstirred aqueous solution of sucrose the molar concentration gradient is -0.2 M·cm⁻¹. The amount of sucrose molecules passing through a 10 cm² window in 10 min is X μ mol. X = ? (6%)

Problem 5. (20%)

Serum creatinine (denoted as A), a detectable byproduct of muscle metabolism, is viewed as a biomarker of kidney health because it is removed from the blood mainly by the kidneys (the so-called "creatinine clearance"). It is known that creatinine has a constant half-life ($t_{1/2}$, hr) while removed in the kidneys (i.e., obeying first-order kinetics). Now, an organ chip as well as a microfluidic PFR (plug-flow reactor) made of 3D human kidney cell culture coated on the microfluidic channel walls is fabricated for creatinine metabolism study. The microfluidic PFR has a cross-section area of S (μ m²) and a length of L (cm), and an artificial blood stream containing a creatinine concentration of C_{A0} is pumped into the kidney-PFR chip at a constant volumetric flow rate ν_0 (μ l/hr) for the study.

- (a) Draw a schematic to illustrate the PFR-mimic microfluidic kidney chip for creatinine removal study. (5%)
- (b) Perform mass balance for a PFR reactor to relate the reactor volume to conversion X for a first-order chemical reaction. (5%)
- (c) Show that the length of the microfluidic PFR kidney (L) can be modeled as follows. (5%)

$$L = -\left(\frac{t_{1/2}}{\ln 2}\right) \left(\frac{v_0}{S}\right) \ln(1 - X)$$

(d) Comment what would be different if the microfluidic organ chip was modeled by a packed-bed reactor instead of a PFR. (5%)

試題隨卷繳回