題號: 273

國立臺灣大學 104 學年度碩士班招生考試試題

科目:工程數學(G)

節次: 6

題號: 273 : 1 頁之第 1 頁

1. Consider the following ordinary differential equation: $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 5y = 3\sin t + \cos t, \text{ with } y(0) = 0 \text{ and } y'(0) = 0.$

- (12%) (a) Find the homogeneous solution, the particular solution and the final solution.
- (12%) (b) Find the solution using Laplace transform.
- 2. (10%) The function, $f(x) = \begin{cases} 0, & -1/2 < x < 0 \\ x, & 0 < x < 1/2 \end{cases}$, is a section of a periodic function. Please expand this function into an appropriate Fourier series.
- 3. (6%) (a) Given A and B are both $n \times n$ matrices. Show that $A = A^{(s)} + A^{(a)}$, where $A^{(s)}$ and $A^{(a)}$ are respectively the symmetric and anti-symmetric matrices. Deduce $A^{(s)}$ and $A^{(a)}$. Compute $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} B_{ji}$ in terms of $A^{(s)}$, $A^{(a)}$, $B^{(s)}$ and $B^{(a)}$.
 - (6%) (b) Given $A = \begin{bmatrix} -1 & 0 & -1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$. Find the triangular factorization A = LU, where $L = [L_y]$ is a lower triangular matrix and

 $U = [U_{ij}]$ is an upper triangular matrix such that $L_{ij} = 0$ when i < j and $L_{ij} = 1$ when i = j, and $U_{ij} = 0$ when i > j.

- (5%) (c) Let A and B be two $n \times n$ similar matrices, i.e., there exists a nonsingular $n \times n$ matrix P such that $A = PBP^{-1}$. Show that the eigenvalues of A and B are the same. Derive the relationship of the eigenvectors of A and B.
- (7%) (d) Given a $n \times n$ non-symmetric matrix A with distinct real eigenvalues $\{\lambda_i\}$ and eigenvectors $\{\mathbf{u}_i\}$, where $i=1,\ 2,\ \cdots,\ n$. So $\{\mathbf{u}_i\}$ constitutes a basis in the n-dimensional space (i.e., any n-dimensional vector \mathbf{x} can be expanded as a unique linear combination of basis $\{\mathbf{u}_i\}$, which is called the eigen-expansion of \mathbf{x} in terms of the eigenvectors of matrix A). Show that the eigenvectors $\{\mathbf{v}_i\}$ of A^T is also a basis such that $\mathbf{u}_i \cdot \mathbf{v}_j = 0$ if $i \neq j$. Then solve the algebraic equation $A\mathbf{x} = \mathbf{b}$ by eigen-expansion. Here \mathbf{x} and \mathbf{b} are $n \times 1$ vectors.
- (4%) (e) A $n \times n$ symmetric matrix P is called to be positive definite if the associated quadratic form $\mathbf{x}^T P \mathbf{x} > 0$ for all nonzero $n \times 1$ vector \mathbf{x} . Show that P possesses positive eigenvalues.
- (5%) (f) Deduce the Green's 1st and 2nd identities:

$$\int_{V} u \nabla^{2} v dV = \int_{S} u \frac{\partial v}{\partial n} dS - \int_{V} \nabla u \cdot \nabla v dV, \quad \int_{V} \left(u \nabla^{2} v - v \nabla^{2} u \right) dV = \int_{S} \left(u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \right) dS,$$

where V is a three-dimensional domain, S is the surface of V, n is the coordinate along the normal \mathbf{n} on S, and u and v are two scalar fields over V.

4. (18%) Solve the one-dimensional heat transfer (or diffusion) equation with source term,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \pi^2 \sin \pi x, \text{ subject to } u(0,t) = 0, \ u(1,t) = 1 \text{ and } u(x,0) = 0.$$

- 5. Given a vector field $\mathbf{a} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{x^2 + y^2 + z^2}$, where $(\hat{i}, \hat{j}, \hat{k})$ are unit vectors in the (x, y, z) coordinates system, calculate
 - $(3\%) \ (a) \ \nabla \cdot \mathbf{a} \ , \quad \ (3\%) \ (b) \ \nabla \times \mathbf{a} \ , \quad \ (3\%) \ (c) \ \nabla \left(\nabla \cdot \mathbf{a} \right) ,$
 - (3%) (d) Directional derivative of $\nabla \cdot \mathbf{a}$ at the point (1,1,1) in the direction of $\hat{i} + 2\hat{j} + 3\hat{k}$,
 - (3%) (e) $\oint_{\mathcal{C}} \mathbf{a} \cdot \mathbf{dl}$, where the integration is carried out along a closed circular path with radius 1 and center at (1,1,0) on the xy-plane.