266

國立臺灣大學 104 學年度碩士班招生考試試題

科目:流體力學(F)

節次:

題號: 266

頁之第

1. A sphere solid with radius R and density ρ_s is moving through a viscous fluid with a relative velocity V_r . The fluid has density ρ and viscosity μ . (15%)

- a. Find the drag force F_d on the solid if the system obeys the Stokes's law.
- b. Obtain the drag coefficient C_d.
- 2. Consider a sphere solid carried by a fluid with density ρ and viscosity μ entering into a horizontal parallel plates duct with vertical height of H and length of L. The flow in the duct is laminar flow with bulk velocity of V_0 . The solid enters from the entrance at a position (x, y) with distance y = h above the bottom plate in vertical y-axis and x = 0 in horizontal x-axis. The solid is assumed to have a constant vertical settling velocity U_v. (20 %)
- a. Obtain the horizontal velocity (V_x) and vertical velocity (V_y) of the fluid.
- b. Find the horizontal velocity (U_x) of the solid.
- c. Derive an equation describing the trajectory (position) of solid in the duct during its moving.
- d. What is the criterion or limitation of h/H for assuring the collection of solid before it flows out the duct?
- 3. An open cylinder tank of height H and radius R is initially entirely filled with a fluid. At time t = 0 the fluid is allowed to drain out through a small hole of radius R₀ at the bottom of the tank. (15 %)
- a. Find the efflux velocity (the velocity of fluid drained out at the small hole) which is related to the instantaneous height of the fluid.
- b. Find the efflux time to completely drain out the fluid by using the unsteady-state mass balance.
- 4. The sum of the depth of flow and the velocity head is defined as the specific energy for open-channel flow. If one rectangular canal has 10 M width and 10 CMS flowrate, (1) Draw the specific energy curve (depth vs. specific energy), (2) Explain the critical depth and alternate depths. (20%)
- 5. The pipe-flow relationship of the pipe network can be expressed by $h_L = kQ^n$, where k, n are constants, Q is the flowrate, and h_L is the head loss. (1) Write down two requirements of the basic relations of continuity and energy for analysis of flow in a pipe network, (2) Explain the Hardy Cross method. (20%)
- 6. A steady velocity field can be expressed in the form:

$$\vec{V} = x^2 \hat{i} + xy \hat{j} \quad ,$$

and \hat{i} , \hat{j} are the unit vectors of a rectangular coordinates, what is the fluid acceleration at point x = 1, y = -1? (10%)