國立臺灣大學109學年度轉學生招生考試試題

題號: 50 科目:線性代數 題號: 50

共 頁之第]

※ 注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。

- 1. Let $\{e_1, e_2, e_3\}$ be the standard basis for \mathbb{R}^3 . Suppose that a linear transformation $T : \mathbb{R}^3 \mapsto \mathbb{R}^3$ is defined by T(x, y, z) = (2x + y, 2y + z, 2z).
 - (a) Write down the matrix of T relative to the standard basis. (5 points.)
 - (b) Write down the matrix of T relative to the ordered basis $\{e_3, e_2, e_1\}$. (5 points.)
 - (c) Find a matrix P such that

$$P^{-1} \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix} P = \begin{pmatrix} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{pmatrix}$$

for all real numbers a. (5 points.)

(d) Prove that for any given $n \times n$ matrix A, there is a matrix Q such that

$$Q^{-1}AQ = A^t.$$

(5 points.)

(e) Let

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

Find a matrix Q such that $Q^{-1}AQ = A^t$. (5 points.)

- 2. Let A and B be two square matrices over \mathbb{C} . Prove that the set of eigenvalues of AB is the same as the set of eigenvalues of BA. (15 points.)
- 3. Let θ be a real number that is not an integer multiple of π (so that $\sin \theta \neq 0$). For a positive integer n, let $A_n = (a_{ij})$ be the $n \times n$ matrix defined by

$$a_{ij} = \begin{cases} 0, & \text{if } |i-j| > 1, \\ 1, & \text{if } |i-j| = 1, \\ 2\cos\theta, & \text{if } i=j. \end{cases}$$

Prove that det $A_n = \frac{\sin(n+1)\theta}{\sin\theta}$. (15 points.)

4. Let

$$A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}.$$

- (a) Find the maximum of X^tAX among all $X \in \mathbb{R}^3$ subject to $X^tX = 1$. Give an example of X that attains the maximum. (8 points.)
- (b) Find the minimum of $tr(Y^tAY)$ among all 3×2 matrices Y over \mathbb{R} subject to $Y^tY=I_2$. Give an example of Y that attains the minimum. (7 points.)
- 5. Let $V = \{a_0 + a_1x + a_2x^2 : a_j \in \mathbb{R}\}$ be the vector space of all polynomials of degree 2 or less over \mathbb{R} . Define three linear functionals on V by

$$f_1(p) = \int_0^1 p(x) dx, \qquad f_2(p) = \int_0^2 p(x) dx, \qquad f_3(p) = \int_{-1}^0 p(x) dx.$$

Find a basis \mathcal{B} for V such that $\{f_1, f_2, f_3\}$ is its dual basis. (15 points.)

6. Find all possible Jordan forms for 7×7 real matrices having $x^2(x-1)^2$ as minimal polynomial. (15 points.)

試題隨卷繳回