題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 /

※ 注意:選擇題請於答案卷之「選擇題作答區」依序作答。

 $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.626 \times 10^{-34} \text{ J-s}$; $R_H = 1.096776 \times 10^7 \text{ m}^{-1}$; F = 96500 C/mol

Gas constant: R = 8.314 J/mol-K= 0.0821 L-atm/mol-K

Atomic mass:

H = 1.0 g/mol, C = 12.0 g/mol, O = 16.0 g/mol, N = 14.0 g/mol, He = 4 g/mol, Mg = 24.3 g/mol

- I. 選擇題 (90%, 每題答案可能 1 至多個, 全部選對始得題分 3 分)
- 1. Which of the following compound has the correct name?
 - (A) Fe(NO₃)₃, iron(III) nitrite

- (B) P₂O₅, diphosphorus pentoxide
- (C) Mg(H₂PO₄)₂, magnesium dihydrogen phosphate (D) CH₃CH₂OCH₃, ethyl methyl ether
- Choose the one that has four significant figures in the answer:
 - (765.6 21.6)0.3045(B) 12.56 - 10.41 (C) 11.11×3.3 (D) $\log (2.0 \times 10^4)$ 0.1011×298.15
- A concentrated nitric acid is 67% HNO₃ by mass and density 1.40 g/mL. Calculate the molarity (mol/L) of the acid.
 - (A) 22.2 M (B) 18.0 M (C) 14.9 M (D) 12.0 M
- By the reaction of 24.31 g of magnesium metal with 24.31 g of nitrogen gas, magnesium nitride can be formed. About the reaction, which of the following statement is correct? (Mg = 24.31, N = 14.01)
 - (A) The balanced chemical reaction is: $Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$
 - (B) Nitrogen gas is the limiting reagent
 - (C) 48.62 g of magnesium nitride can be formed
 - (D) $\Delta H_1^o(Mg_3N_{2(s)}) = -461.1$ kJ/mol, so the described reaction is exothermic
- For one mole of the following gases at 25°C and 1 atm: H₂, He, and CH₄, choose the correct statement.
 - (A) The average kinetic energy: H₂ > He > CH₄
 - (B) The average molecular speed: H₂ > He > CH₄
 - (C) The effusion rate of the molecules: H₂ > He > CH₄
 - (D) The density of the gas: H₂ > He > CH₄
- Given the following two reactions

$$2NO \rightarrow N_2 + O_2$$

$$\Delta H = -180 \text{ kJ}$$

$$2NO + O_2 \rightarrow 2NO_2$$

$$\Delta H = -112 \text{ kJ}$$

Calculate the enthalpy of the reaction (in kJ) of nitrogen gas with oxygen gas to produce nitrogen dioxide: $N_1 + 2O_2 \rightarrow 2NO_3$

- (A) -292 (B) -68 (C) 68 (D) 292
- When 2.00 mol of SO₂(g) reacts completely with 1.00 mol of O₂(g) to form 2.00 mol of SO₃(g) at 25°C and constant pressure of 1.00 atm, 198 kJ of energy is released as heat.

$$(A) q = -198 kJ$$

(B)
$$\Delta H = -198 \text{ kJ}$$

(C)
$$w = -198 \text{ kJ}$$

(B)
$$\Delta H = -198 \text{ kJ}$$
 (C) $w = -198 \text{ kJ}$ (D) ΔE (internal energy) = -198 kJ

題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 2 頁

The normal boiling point of methanol (CH₃OH) is 64.7°C, and its molar enthalpy of vaporization is $\Delta H_{\text{vap}} = +71.8 \text{ kJ/mol.}$

(A) The vapor pressure of methanol at 64.7°C is 760 torr.

(B) The vaporization of methanol is an endothermic process.

(C) The entropy of system increases during vaporization.

(D) Based on Trouton's rule, ΔS_{vap} is about 1.11 kJ/mol-K.

For an exothermic, spontaneous reaction: $Zn(s) + HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ at 25°C, which of the following must be true?

 $(A) \Delta H^{o} < 0$

(B) $\Delta S^{o} < 0$

(C) $E^{o}_{cell} < 0$

(D) $\Delta G^{\circ} < 0$

10. Indicate which of the following is a permissible set of quantum numbers?

(A) n = 2, l = 2, $m_l = +2$, $m_s = +1/2$

(B) n = 4, l = 2, $m_l = -2$, $m_s = -1/2$

(C) n = 3, l = 1, $m_l = +2$, $m_s = -1/2$

(D) n = 1, l = 0, $m_l = 0$, $m_s = 0$

11. Which of the following is a polar molecule?

(A) CF_4 (B) SiF_4 (C) SF_4 (D) XeF_4

12. The decomposition of dimethyl ether, (CH₃)₂O, at 510 °C is a first-order process with a rate constant of 6.8 x 10^{-4} s⁻¹: (CH₃)₂O(g) \rightarrow CH₄(g) + H₂(g) + CO(g)

If the initial pressure of (CH₃)₂O is 135 torr, how long will it take when the pressure of (CH₃)₂O drops to 51 torr?

(A) 17.9 s

(B) 1020 s (C) 1430 s (D) $1.23 \times 10^5 \text{ s}$

13. The rate constant (k) for the gas-phase decomposition of N_2O_5 : $N_2O_5 \rightarrow 2NO_2 + 1/2O_2$ has the following temperature dependence. Calculate the activation energy of the reaction.

In(k)

-5.32 -7.60

(A) 0.831 J/mol

(B) 1020 J/mol

(C) 12447 J/mol

(D) 103 kJ/mol

-	T (K)	k (1/s)	1/T
	338	0.00490	0.00296
	318	0.00050	0.00314
	298	0.00004	0.00336

14. In order to prepare a buffer with pH 7.4, which of the following pairs should you choose best?

(A) NaF/HF ($K_a = 6.8 \times 10^{-4}$)

(B) NaC_6H_5COO/C_6H_5COOH ($K_a = 6.5 \times 10^{-5}$)

(C) NaOCI/HOCI ($K_a = 3.0 \times 10^{-8}$)

(D) $Na_2CO_3/NaHCO_3$ ($K_a = 5.6 \times 10^{-11}$)

36 題號:

科目:普通化學(B)

題號: 36

共 4 頁之第 3

15. Given that ΔG^{o}_{f} for NH₃ = -16.67 kJ/mol, calculate the equilibrium constant for the following reaction at 298 K: $N_2(g) + 3H_2(g) = 2NH_3(g)$

(A) 1.20×10^{-3} (B) 8.36×10^{-2} (C) 8.36×10^{2}

(D) 6.99×10^5

16. The dissociation energy of a carbon-bromine bond is typically about 210 kJ/mol. What is the maximum wavelength of photons that can cause C-Br bond dissociation?

(A) 317 nm

(B) 570 nm

(C) 947 nm

(D) 5261 nm

17. Use the following equations:

 $HAsO_4^{2-}(aq) = AsO_4^{3-}(aq) + H^{+}(aq)$

 $K_1 = 3.0 \times 10^{-13}$

 $HAsO_4^2$ (aq) + H^+ (aq) $= H_2AsO_4$ (aq) $K_2 = 1.8 \times 10^7$

determine the equilibrium constant for the following reaction:

 $H_2AsO_4(aq) = AsO_4(aq) + 2H(aq)$

(A) 1.7×10^{-20}

(B) 1.8×10^{-7}

(C) 5.6×10^{-7} (D) 5.4×10^{-6}

18. Consider the equilibrium: $N_2O_4(g) = 2NO_2(g)$ $\Delta H = 58.0$ kJ, which of the following will shift the equilibrium to the right?

(A) A catalyst is added to the system.

(B) N₂ is added at constant volume.

(C) The volume is decreased.

(D) The temperature is increased.

19. Which of the following radioactive decay shows the greatest penetrating power?

(A) α-dacy (B) β-decay

(C) positron emission

20. A radioactive element has a half-life of 1.0 hr. How many hours will it take for the number of atoms present to decay to 1/16th of the initial value?

(A) 2.77

(B) 4

(C) 16

(D) 18

21. Which of the following solutions has the highest osmotic pressure at 25°C?

(A) 0.2 M KBr

(B) 0.2 M CH₃COOH (C) 0.2 M Na₂SO₄ (D) 0.2 M glucose, C₆H₁₂O₆

22. A solution has a 1:4 mole ratio of pentane to hexane. The vapor pressures of the pure hydrocarbons at 20°C are 441 mmHg for pentane and 121 mmHg for hexane.

- (A) The mole fraction of pentane is 0.20.
- (B) The partial pressure of pentane is 88.2 mmHg.
- (C) The mole fraction of pentane in the vapor phase is 0.20.
- (D) The pentane is the more volatile component in the solution..

23. For the phase diagram of compound X, which of the following statement is true?

(A) At 20°C and 1 atm, compound X exists as a liquid.

(B) The normal melting point of compound X is about 50°C.

(C) The critical point of compound X is point A

(D) The melting point of the compound X increases with increasing pressure.

24. In the electrolysis of aqueous NaCl, how many liters of Cl₂(g) (measured at STP) are generated by a current of 7.50 A for a period of 100 min?

(A) 3.83

(B) 5.22

(C) 5.71

(D) 10.4

題號: 36

科目:普通化學(B)

題號: 36

共 4 頁之第 4 頁

- 25. At 25°C, $E^{\circ}_{cell} = 1.47 \text{ V}$ for the voltaic cell: $V(s) \mid V^{2+}(1 \text{ M}) \parallel Cu^{2+}(1 \text{ M}) \mid Cu(s)$
 - (A) V(s) is the anode.
 - (B) V(s) is the negative electrode.
 - (C) Electrons flow from V(s) to Cu(s).
 - (D) The cell potential (E_{cell}) of the reaction is zero at equilibrium.
- 26. At 25°C, the value of E°_{cell} for the reaction $Zn(s) + Pb^{2+}(aq) \rightarrow Zn^{2+}(aq) + Pb(s)$ is +0.66 V. What is E_{cell} for the reaction: $Zn(s) + Pb^{2+}(0.010 \text{ M}) \rightarrow Zn^{2+}(0.10 \text{ M}) + Pb(s)$?

(A) +0.60 V (B) +0.63 V (C) +0.66 V (D) +0.69 V

- 27. For the coordination compound, [Rh(eu)2Cl2]NO3
 - (A) The oxidation number of the central metal is +3.
 - (B) The coordination number of the complex is 4.
 - (C) The geometry of the complex is square planar.
 - (D) The NO₃ is one of the ligands.
- 28. Consider the complex ion [CoF₆]³- and F is a weak-field ligand. Choose the correct statement.
 - (A) The electron configuration of the neutral cobalt atom (Co) is [Ar]4s²3d⁷.
 - (B) The electron configuration of the central metal cobalt ion in the complex is [Ar]4s²3d⁴.
 - (C) The [CoF₆]³⁻ is a diamagnetic complex ion.
 - (D) It is a low-spin complex ion.
- 29. Which of the following exhibits optical isomerism?

$$\begin{array}{c} H \\ CH_3 - CH_2 - C - NH_2 \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \end{array} \qquad \begin{array}{c} CH_3 \\ CH_3 \end{array} \qquad \begin{array}{c} CCH_3 \\ CCH_3 \\ CCH_3 \end{array} \qquad \begin{array}{c} CCH_3 \\ CCH_3 \\ CCH_3 \end{array} \qquad \begin{array}{c} CCH_3 \\ CCH_3 \\ CCH_3 \\ CCH_3 \end{array} \qquad \begin{array}{c} CCH_3 \\ CC$$

- (C) $trans-[Co(en)_2Cl_2]^+$
- (D) cis-[Pt(NH3)2Cl2]
- 30. The polymer Nomex has the structure shown on the right.

- (A) The monomer is
- (B) This is a kind of polyester.
- (C) This is a homopolymer.
- (D) This is a condensation polymer.
- II. 計算問答題 (10%) ※ 本大題請於答案卷內之「非選擇題作答區」作答
- Consider the O2 molecule, (a) Draw the molecular orbitals energy-level diagram. (b) Determine the bond order. (c) Indicate the magnetic property (diamagnetic or paramagnetic) of the molecule. (10%)

試題隨卷繳回