題號: 401 國立臺灣大學 110 學年度碩士班招生考試試題

401

2 頁之第

科目:工程數學(D) 節次: 4

> 1. (20%) Label the following statements as being true or false. (No explanation is needed. Each correct answer gets 2% and each wrong answer gets 0%):

- (a) Let S be a nonempty subset of \mathbb{R}^n . Then $(S^{\perp})^{\perp} = \operatorname{Span} S$.
- (b) Let S_1 be a linearly independent subset of \mathbb{R}^n and S_2 be a generating set for \mathbb{R}^n . Then S_1 cannot have more vectors than S_2 .
- (c) Let A be $m \times n$ and let P_W be the orthogonal projection matrix for Col A. Then $A\mathbf{x} = P_W \mathbf{b}$ is consistent for each $\mathbf{b} \in \mathcal{R}^m$.
- (d) Let A_1 and A_2 be $m \times n$ matrices. If $A_1 \mathbf{x} = \mathbf{b}_1$ and $A_2 \mathbf{x} = \mathbf{b}_2$ are consistent, then $\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$ is consistent.
- (e) Let V be a finite dimensional inner product space and let \mathcal{B} be a basis for V. Then $\langle f, g \rangle = [f]_{\mathcal{B}} \cdot [g]_{\mathcal{B}}, \text{ for any } f, g \in V.$
- (f) There exists a 3 × 3 diagonalizable matrix whose characteristic polynomial is given by $t^3 - t^2 - 2t$.
- (g) Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis for \mathbb{R}^n . Let A be $n \times n$. If $||A\mathbf{v}_i|| = ||\mathbf{v}_i||$, for $i = 1, 2, \ldots, n$, then A is orthogonal.
- (h) Let $T: \mathbb{R}^{99} \to \mathbb{R}^{100}$ be linear. Then there exist a pair of distinct vectors $\mathbf{v}_1, \mathbf{v}_2 \in$ \mathcal{R}^{99} such that $T(\mathbf{v}_1) = T(\mathbf{v}_2)$.
- (i) Let Q and A be $m \times m$ and $m \times n$ matrices respectively, and $b \in \mathbb{R}^m$. Let S_1 and S_2 be solution sets to $A\mathbf{x} = \mathbf{b}$ and $QA\mathbf{x} = Q\mathbf{b}$ respectively. Then S_1 is a subspace of S_2 .
- (j) Let W_1 and W_2 be subspaces of \mathbb{R}^n . If dim $W_1 + \dim W_2 > n$, then $W_1 \cap W_2$ is a nonzero subspace of \mathbb{R}^n .
- 2. Let V be the set of all 2×2 symmetric matrices and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Let T be a linear operator on V defined by $T(A) = B^T A B$, for each $A \in V$
 - (a) (3%) Find a basis for V.
 - (b) (12%) Find the eigenvalues of T.
- 3. (15%) Let \mathcal{P}_2 be the set of all polynomials with degree less than equal to 2. For any $p_1(x), p_2(x) \in \mathcal{P}_2$, their inner product is defined by

$$\langle p_1(x), p_2(x) \rangle = \int_{-1}^{1} p_1(x) p_2(x) dx.$$

Let $W = \{1, x\}$ and $p(x) = x^2$. Find the unique polynomials $q(x) \in W$ and $r(x) \in W^{\perp}$ such that p(x) = q(x) + r(x).

題號: 401 國立臺灣大學 110 學年度碩士班招生考試試題

科目:工程數學(D)

題號: 401 節次: 4 2 2 頁之第

> 4. You have two coins. Coin A comes up heads with probability 1/4. Coin B comes up heads with probability 1/2. You choose one of these coins randomly and then you flip it 3 times.

- (a) (4%) What is the probability that you observe at least 2 heads?
- (b) (4%) If you observe 3 tails, what is the probability that you have chosen Coin A?
- 5. The random variables X and Y have the joint probability density func-

$$f_{X,Y}(x,y) = C \times \exp\left(-\frac{4x^2 + y^2}{8}\right),$$

where $-\infty < x < \infty$ and $-\infty < y < \infty$.

- (a) (4%) Find the constant C.
- (b) (4%) Find the conditional probability density function $f_{X|Y}(x|y)$.
- (c) (8%) Let U = X + 2Y and V = X Y. What is the correlation coefficient of U and V?
- (d) (8%) Let Z = 3X + 2Y. Derive the moment generating function $\phi_Z(s) = \mathbb{E}[e^{sZ}]$. You have to give the derivation, not just the an-
- 6. You make N phone calls. The length of the ith phone call, denoted by T_i in minutes, is an exponential random variable with expected value $1/\lambda$, where the parameter $\lambda > 0$. The random variables T_1, T_2, \dots, T_N are independent and identically distributed. For any fraction of a minute at the end of a call, the phone company charges for a full minute. In other words, the phone company calculates its charge based on $W_i = [T_i]$ for the ith phone call. Here the ceiling function of a real number x, denoted by [x], is the least integer number greater than or equal to x. For instance, $\lceil 3.1 \rceil = 4$ and $\lceil 3 \rceil = 3$.
 - (a) (3%) What is the probability density function of T_1 ?
 - (b) (7%) Derive the probability mass function of W_1 . You have to give the derivation, not just the answer.
 - (c) (8%) Let $L = \sum_{i=1}^{N} W_i$. Derive the probability mass function of L. You have to give the derivation, not just the answer.

試題隨卷繳回