國立臺灣大學110學年度碩士班招生考試試題

題號: 109 科目:統計學(A)

節次: 4

題號:109 共 3 頁之第 1 頁

• 本試題共7大題,合計100分。

- 請依題號依序作答。
- 請詳述理由或計算推導過程, 否則不予計分。
- 1. (15 %) Let $\{X_i\}_{i=1}^n \sim^{i.i.d.} N(\theta, \theta)$.
 - (a) Find $Cov(X_i \theta, (X_i \theta)^2)$.
 - (b) Find a pivotal quantity and use it to construct an exact 95% interval estimator of θ .
 - (c) Consider the following estimator of θ :

$$\hat{\theta}(c) = c\bar{X} + (1-c)\hat{\sigma}^2, \quad \bar{X} = \frac{1}{n}\sum_i X_i, \quad \hat{\sigma}^2 = \frac{1}{n}\sum_i (X_i - \bar{X}_n)^2, \quad c \in [0,1]$$

Find $Var(\hat{\theta}(c))$.

Definition 1 For an estimator T_n , if $\lim_{n\to\infty} k_n Var(T_n) = \tau^2 < \infty$, where $\{k_n\}$ is a sequence of constants (a normalizing constant), then τ^2 is called the limiting variance.

(d) Find the optimal choice of c that minimizes the limiting variance of $\hat{\theta}(c)$.

State clearly what theorems/properties you use.

2. (10 %) Suppose that Y is discrete-valued, taking values only on the non-negative integers, and the conditional distribution of Y given X = x is

$$Y|X = x \sim Poisson(\beta x)$$

- (a) Can we estimate β by a linear regression model? Explain.
- (b) Does the model exhibit homoskedastic error structure? Explain.
- 3. (10 %) Suppose pseudo uniform random numbers on the interval $[0, 1], u_1, u_2, \ldots, u_n$, are generated by a specific algorithm.
 - (a) Describe how to apply the inverse method to generate Logistic random variables X_i with pdf:

$$f(x) = \frac{e^{-x}}{(1+e^{-x})^2}, \quad x \in \mathbb{R}$$

(b) Provide a theoretical justification for the inverse method.

國立臺灣大學110學年度碩士班招生考試試題

科目:統計學(A)

節次: 4

題號: 109

題號:109 3 頁之第 2 頁

4. (15 %) Consider the following growth regression model

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Regime_i + \beta_3 X_i \times Regime_i + \varepsilon_i$$

where $Y_i = \Delta \log(GDP_i) \times 100$ and $X_i = \Delta \log(export_i) \times 100$ are GDP growth and export growth, respectively. $Regime_1 = 1$ if the country adopts a fixed exchange rate system, and otherwise $Regime_1 = 0$.

(a) What is the impact of 1% increase in export growth on GDP growth for countries with a fixed exchange rate regime (i.e., fixers)?

Now suppose the empirical results are as follows:

$$\hat{Y}_i = 1.25 + 2.3 \ X_i - 0.56 \ Regime_i - 1.2 \ X_i \times Regime_i$$

$$(0.15) \ (1.2) \ (0.22) \ (0.4)$$

where standard errors are in parentheses.

- (b) Can you conclude (at 5% level of significance) that impacts of export growth on GDP growth vary by exchange rate regime?
- (c) What is the predicted percentage difference in GDP growth of a fixer and a non-fixer having the same growth rate of export?
- 5. (20%) True, false, or uncertain? Evaluate the following statements with brief explanations.
 - (a) (5%) Multiplying the dependent variable by 100 and the explanatory variable by 1,000 makes the regression R^2 10 times larger.
 - (b) (5%) In a linear probability model, $Y_i = \beta_0 + \beta_1 X_i + u_i$, where Y_i is a binary variable and takes the value of o or o, the OLS estimate of o is consistent and efficient.
 - (c) (5%) For the model

$$Y_i = \beta_0 + \beta_1 X_i + u_i,$$

$$E(u_i|X_i) = 0.$$

Let $\hat{\beta}_1$ be the OLS estimator of β_1 based on the available sample. Suppose that the *i*'th observation is included in the sample only if $Z_i = \gamma_0 + \gamma_1 W_i + \nu_i > 0$, and $Cov(u_i, \nu_i) > 0$, then $\hat{\beta}_1$ is consistent.

(d) (5%) In the context of a controlled experiment, consider the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$, where Y_i is the outcome, X_i is the randomly assigned treatment level, and u_i contains all the additional determinants of the outcome. Then the OLS estimator of β_1 will be inconsistent since there are omitted variables present.

題號: 109 國立臺灣大學110學年度碩士班招生考試試題

科目:統計學(A)

節次: 4

題號:109 共 3 頁之第 3 頁

6. (15%) Answer the following questions.

- (a) (4%) Consider the bivariate regression model, $Y_i = \beta_0 + \beta_1 X_i + u_i$, where E(u|X) = 0. Suppose that X_i is measured with error, and the measured X_i is $\tilde{X}_i = X_i + w_i$, where w_i is independent of X with variance σ_w^2 . If we regress Y_i on \tilde{X}_i using OLS, what is the probability limit of $\hat{\beta}_i$?
- (b) (7%) Consider the bivariate regression model with two-period panel data, $Y_{i,t} = \beta_0 + \beta_1 X_{i,t} + u_{i,t}$, where $X_{i,t}$ and $X_{i,t-1}$ are correlated with correlation coefficient $\rho_X > 0$. Suppose that $X_{i,t}$ is measured with error, and the measured $X_{i,t}$ is $\tilde{X}_{i,t} = X_{i,t} + w_{i,t}$, where $w_{i,t}$ is not autocorrelated and is independent of $X_{i,t}$, with variance σ_w^2 . If we regress $(Y_{i,t} Y_{i,t-1})$ on $(\tilde{X}_{i,t} \tilde{X}_{i,t-1})$ using OLS, what is the probability limit of $\hat{\beta}_1^{\text{FD}}$ (first differenced $\hat{\beta}_1$)?
- (c) (4%) Is the bias of $\hat{\beta}_1^{\text{FD}}$ in (b) greater or smaller than the bias of $\hat{\beta}_1$ in (a)?
- 7. (15%) Consider the following simultaneous equations model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 Z_i + u_i, \tag{1}$$

$$X_{i} = y_{0} + y_{1}Y_{i} + y_{2}W_{i} + v_{i},$$
(2)

where $E(u_i) = E(v_i) = o$, $Cov(u_i, v_i) = Cov(Z_i, W_i) = o$, and Z_i and W_i are exogenous.

- (a) (5%) Is the OLS estimate of β_1 consistent? Why?
- (b) (6%) Given the observations (X_i, Y_i, W_i, Z_i) , $i = 1, \dots, n$, describe the method and procedure to estimate β_i consistently?
- (c) (4%) Is the proposed estimator in (b) consistent when $y_2 = 0$? Why?

試題隨卷繳回