題號: 58

國立臺灣大學 108 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 58 共 1 頁之第 1 頁

(1) (20 points) Let V_1 be the \mathbb{R} -linear span of functions: $\sin^i x \cdot \cos^j x$, i, j = 0, ..., n. Let V_2 be the \mathbb{R} -linear span of functions: $\sin kx$. $\cos kx$, k = 0, ..., n. Determine the dimensions of V_1 and V_2 and prove your assertion. Is it true that $V_1 = V_2$? Prove or disprove it.

(2) (15 points) Let $\varphi : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation and let id be the identity map sending every $v \in \mathbb{R}^n$ to v. Prove that there exist C > 0 such that for all $t \in \mathbb{R}$, |t| > C, the map $id + t \cdot \varphi$ is surjective.

(2) (15 points) Let
$$A := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, B := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

 $V = \{ v \in \mathbb{C}^4 \mid A \cdot v = \lambda_a \cdot v, B \cdot v = \lambda_b \cdot v, \text{ for some } \lambda_a, \lambda_v \in \mathbb{C} \}.$ Find a basis of V.

(4) (15 points) Let A be an $n \times n$ diagonal matrix with diagonal entries $A_{11}, ..., A_{nn}$. Show that the linear span W of A^k , k = 0, 1, ..., is of dimension n if and only if $A_{ii} \neq A_{jj}$ for different i and j.

(5) (15 points) Suppose φ and g are \mathbb{R} -linear transformations from \mathbb{R}^n to \mathbb{R}^n such that $g \circ \varphi = \varphi^2 \circ g$ and g is *injective*. Show that φ and φ^2 have the same kernel (null-space), image, eigenvalues and eigenspaces.

(6) Prove or disprove the following statements (10 points for each). Let $Q: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a quadratic form.

- (a) Let $\mathbb{Z}^n \subset \mathbb{R}^n$ denote the subset consisting of vectors with integer coordinates. Then Q is positive definite if and only if Q(v) > 0 for all $v \in \mathbb{Z}^n$.
- (b) There is some $n \times n$ matrix A such that $Q(v) = v^t \cdot A^t \cdot A \cdot v$, for all $v \in \mathbb{R}^n$. Here, B^t denotes the transpose of B.

試題隨卷繳回