題號: 103 國立臺灣大學108學年度碩士班招生考試試題

科目:機率統計

題號:103

1. (15%) Let $T_{(1)}, \ldots, T_{(n)}$ be the order statistics of a random sample T_1, \ldots, T_n from an exponential distribution with rate λ_0 . Derive the joint distribution of U_1, \ldots, U_n , where $U_i = (n-i+1)(T_{(i)}-T_{(i-1)}), i=1,\ldots,n$, with $T_{(0)}=0$.

- 2. (10%) (10%) Let X_1, \ldots, X_n be a random sample from a population with the density function $f(x|\theta_0) = 0.5e^{-|x-\theta_0|}I_{\{(-\infty,\infty)\}}(x)$. Find the maximum likelihood estimator of θ_0 and derive its sampling distribution.
- 3. (15%) Let X_1, \ldots, X_{n+1} be a random sample from $Bernoulli(\pi_0)$ and $h(\pi_0) = P(\sum_{i=1}^n X_i > X_{n+1}|\pi_0)$. Find the uniformly minimum variance unbiased estimator of $h(\pi_0)$.
- 4. (5%) (10%) State and show the weak law of large numbers.
- 5. (15%) Suppose that $\hat{\theta}$ is an estimator of θ with $E[\hat{\theta}] = \theta + b_1/n + b_2/n^2 + \dots$ The sample is further split into p groups of size m with n = mp. Let $\hat{\theta}_j$ be computed from the m(p-1) observations left after the jth group has been deleted, $V_j = p\hat{\theta} (1-p)\hat{\theta}_j$, $j = 1, \dots, p$, and $\hat{\theta}_J = \sum_{j=1}^p V_j/p$. Show that the bias of $\hat{\theta}_J$ is of the order n^{-2} .
- 6. Let X_1, \ldots, X_n be a random sample from a population with the density function $f(x|\theta) = \theta e^{-\theta x} I_{(0,\infty)}(x)$.
- (6a) (10%) Find a size α , $0 < \alpha < 1$, likelihood ratio test of $H_0: \theta = \theta_0$ versus $H_A: \theta \neq \theta_0$.
- (6b) (10%) Find a valid p-value for the above hypotheses.

試題隨卷繳回