－Unless otherwise specified，everything is over \mathbb{R} ．
－The ordinary inner product of \mathbb{R}^{n} is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ ．
－ $\mathcal{M}_{m \times n}$ is the space of $m \times n$ matrices；$f_{M}(t)=\operatorname{det}\left(t I_{n}-M\right)$ is the characteristic polynomial of $M ; \operatorname{im} A$ is the image of $A ; \operatorname{ker} A$ is the kernel of $A ; V^{\perp}$ is the normal space of V ．Parallelepiped $=$ 平行六面體．
－Duel space V^{*} of real vector space V is $\{\alpha \mid \alpha: V \rightarrow \mathbb{R}, \alpha$ is linear $\}$ ．
A．［15\％］是非題．若錯誤，需説明原因或給出反例．本題答案須寫在答案簿最前面．
1．There is a linear transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that im $A=\operatorname{ker} A$ ．
2．$A \in \mathcal{M} I_{n \times n}$ ．Suppose $A^{2}=A$ then $\operatorname{ker} A=(\operatorname{im} A)^{\perp}$ ．
3．For any $A, B, C \in \mathcal{M}_{n \times n}, \operatorname{tr}(A B C)=\operatorname{tr}(C B A)$ ．
4．The matrix representation A of an adjoint transformation satisfies $A^{\mathrm{t}}=A$ ．
5．Symmetric matrix A is positive definite if and only if all its diagonal elements are positive．

B．［85\％］計算／證明題• $(6 \mathrm{~A})$ 和（ 6 B ）只選擇一題作答，兩題皆答，以先寫者計算•
（I）$[15 \%]$ Find all Jordan canonical forms for square matrices in $\mathcal{M}_{n \times n}, n \leq 6$ ，with minimal polynomial $(t-1)^{2}(t+1)^{2}$ ．
（2）$[15 \%]$ For $A, B \in \mathcal{M}_{m \times n}$ ，show that $f_{B A^{t}}(t)=f_{B^{t} A}(t) \cdot t^{m-n}$ ．
（3）$[15 \%]$ Consider $V=\left\{A \mid A X=X A\right.$ ，for any $\left.X \in \mathcal{M}_{n \times n}\right\} \subset \mathcal{M}_{n \times n}$ ．Show that V is an one dimensional subspace of $\mathcal{M}_{n \times n}$ ．
（4）$[15 \%] A \in \mathcal{M}_{n \times n}$ ．Suppose $\left(t^{2}+1\right) \mid f_{A}(t)$ ，are there $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \in \mathbb{R}^{n}$ such that $A \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$ and $A \overrightarrow{\mathbf{v}}=-\overrightarrow{\mathbf{u}}$ ？Prove or disprove it．
（5）$[15 \%] U$ is a subspace of a finite dimensional vector space V ．Consider $D_{U} \subset V^{*}$ defined by $\left\{\alpha \in V^{*} \mid U\right.$ is a subspace of ker $\left.\alpha\right\}$ ．Show that D_{U} is a subspace of dimension $\operatorname{dim} V-\operatorname{dim} U$ ．
（6A）$[10 \%]$ Show the volume V of the parallelepiped span by $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{n}$ satisfies

$$
\begin{aligned}
V^{2}= & \|\overrightarrow{\mathrm{u}}\|^{2}\|\overrightarrow{\mathrm{v}}\|^{2}\|\overrightarrow{\mathrm{w}}\|^{2}+2(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}})(\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}}) \\
& -\|\overrightarrow{\mathrm{u}}\|^{2}(\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}})^{2}-\|\overrightarrow{\mathrm{v}}\|^{2}(\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}})^{2}-\|\overrightarrow{\mathrm{w}}\|^{2}(\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}})^{2}
\end{aligned}
$$

（6B）［10\％］Following diagram of vector spaces and linear transformations satisfies
（a） $\operatorname{ker} f_{i+1}=\operatorname{im} f_{i}, \operatorname{ker} g_{i+1}=\operatorname{im} g_{i}, i=0,1,2,3,4$.
（b）$\alpha_{i+1} \circ f_{i}=g_{i} \circ \alpha_{i}, i=1,2,3,4$ ．

$\left\{0_{A_{1}}\right\}$	$\xrightarrow{f_{4}}$	A_{1}	$\xrightarrow{f_{4}}$	B_{1}	$\xrightarrow{f_{2}}$	C_{1}	$\xrightarrow{f_{3}}$	D_{1}	$\xrightarrow[\rightarrow]{f_{4}}$	E_{1}	$\xrightarrow{f_{5}}$	$\left\{0_{E_{1}}\right\}$
		$\alpha_{1} \downarrow \cong$		$\alpha_{2} \downarrow \cong$		$\alpha_{3} \downarrow$		$\alpha_{4} \downarrow \cong$		$\alpha_{5} \downarrow \cong$		
$\left\{0_{A_{2}}\right\}$	$\xrightarrow{g_{0}}$	A_{2}	$\xrightarrow{g_{3}}$	B_{2}	$\xrightarrow{g_{2}}$	C_{2}	$\xrightarrow{g_{3}}$	D_{2}	$\xrightarrow{g_{4}}$	E_{2}	$\xrightarrow{g_{5}}$	$\left\{0_{E_{1}}\right\}$

Show that if $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}$ are isomorphisms，then α_{3} is an isomorphism．

語题隨卷維回

－Unless otherwise specified，everything is over \mathbb{R} ．
－The ordinary inner product of \mathbb{R}^{n} is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ ．
－ $\mathcal{M}_{m \times n}$ is the space of $m \times n$ matrices；$f_{M}(t)=\operatorname{det}\left(t I_{n}-M\right)$ is the characteristic polynomial of $M ; \operatorname{im} A$ is the image of $A ; \operatorname{ker} A$ is the kernel of $A ; V^{\perp}$ is the normal space of V ．Parallelepiped $=$ 平行六面體．
－Duel space V^{*} of real vector space V is $\{\alpha \mid \alpha: V \rightarrow \mathbb{R}, \alpha$ is linear $\}$ ．
A．［15\％］是非題．若錯誤，需説明原因或給出反例．本題答案須寫在答案簿最前面．
1．There is a linear transformation $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that im $A=\operatorname{ker} A$ ．
2．$A \in \mathcal{M}_{n \times n}$ ．Suppose $A^{2}=A$ then $\operatorname{ker} A=(\operatorname{im} A)^{\perp}$ ．
3．For any $A, B, C \in \mathcal{M}_{n \times n}, \operatorname{tr}(A B C)=\operatorname{tr}(C B A)$ ．
4．The matrix representation A of an self－adjoint transformation satisfies $A^{\mathrm{t}}=A$ ．
5．Symmetric matrix A is positive definite if and only if all its diagonal elements are positive．

B．［85\％］計算／證明題。（6A）和（6B）只選擇一題作答，兩題皆答，以先寫者計算。
（1）$[15 \%]$ Find all Jordan canonical forms for square matrices in $\mathcal{M}_{n \times n}, n \leq 6$ ，with minimal polynomial $(t-1)^{2}(t+1)^{2}$ ．
（2）$[15 \%]$ For $A, B \in \mathcal{M}_{m \times n}$ ，show that $f_{B A^{\mathrm{t}}}(t)=f_{B^{\mathrm{t}} A}(t) \cdot t^{m-n}$ ．
（3）［15\％］Consider $V=\left\{A \mid A X=X A\right.$ ，for any $\left.X \in \mathcal{M}_{n \times n}\right\} \subset \mathcal{M}_{n \times n}$ ．Show that V is an one dimensional subspace of $\mathcal{M}_{n \times n}$ ．
（4）$[15 \%] A \in \mathcal{M}_{n \times n}$ ．Suppose $\left(t^{2}+1\right) \mid f_{A}(t)$ ，are there nonzero $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \in \mathbb{R}^{n}$ such that $A \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}}$ and $A \overrightarrow{\mathbf{v}}=-\overrightarrow{\mathbf{u}}$ ？Prove or disprove it．
（5）$[15 \%] U$ is a subspace of a finite dimensional vector space V ．Consider $D_{U} \subset V^{*}$ defined by $\left\{\alpha \in V^{*} \mid U\right.$ is a subspace of ker $\left.\alpha\right\}$ ．Show that D_{U} is a subspace of dimension $\operatorname{dim} V-\operatorname{dim} U$ ．
（6A）［10\％］Show the volume V of the parallelepiped span by $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{n}$ satisfies

$$
\begin{aligned}
V^{2}= & \|\overrightarrow{\mathbf{u}}\|^{2}\|\overrightarrow{\mathbf{v}}\|^{2}\|\overrightarrow{\mathbf{w}}\|^{2}+2(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}})(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}}) \\
& -\|\overrightarrow{\mathbf{u}}\|^{2}(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}})^{2}-\|\overrightarrow{\mathbf{v}}\|^{2}(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{u}})^{2}-\|\overrightarrow{\mathbf{w}}\|^{2}(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})^{2}
\end{aligned}
$$

（6B）［10\％］Following diagram of vector spaces and linear transformations satisfies
（a） $\operatorname{ker} f_{i+1}=\operatorname{im} f_{i}, \operatorname{ker} g_{i+1}=\operatorname{im} g_{i}, i=0,1,2,3,4$ ．
（b）$\alpha_{i+1} \circ f_{i}=g_{i} \circ \alpha_{i}, i=1,2,3,4$ ．

$$
\begin{array}{ccccccccccccc}
\left\{0_{A_{1}}\right\} & \xrightarrow{f_{0}} & A_{1} & \xrightarrow{f_{7}} & B_{1} & \xrightarrow{f_{子}} & C_{1} & \xrightarrow{f_{3}} & D_{1} & \xrightarrow{f_{4}} & E_{1} & \xrightarrow{f_{5}} & \left\{0_{E_{1}}\right\} \\
& \alpha_{1} \downarrow \cong & & \alpha_{2} \downarrow \cong & \alpha_{3} \downarrow & & \alpha_{4} \downarrow \cong & & \alpha_{5} \downarrow \cong & & \\
\left\{0_{A_{2}}\right\} & \xrightarrow{g_{0}} & A_{2} & \xrightarrow{g_{7}} & B_{2} & \xrightarrow{g_{2}} & C_{2} & \xrightarrow{g_{3}} & D_{2} & \xrightarrow{g_{4}} & E_{2} & \xrightarrow{g_{5}} & \left\{0_{E_{1}}\right\}
\end{array}
$$

Show that if $\alpha_{1}, \alpha_{2}, \alpha_{4}, \alpha_{5}$ are isomorphisms，then α_{3} is an isomorphism．

