目:線性代數(A) 次: 4	題號 共 / 頁之第 /
※ 注意:全部題目均請作答於試卷內之「非選擇題作答區」,言	青標明題號依序作答。
 Unless otherwise specified, everything is over ℝ. The ordinary inner product of ℝⁿ is denoted by u · v. 	· ·
 M_{m×n} is the space of m×n matrices; f_M(t) = det(tI_n - M) is the charact polynomial of M; im A is the image of A; ker A is the kernel of A; V[⊥] is the space of V. Parallelepiped = 平行六面體. Duel space V* of real vector space V is {α α : V → ℝ, α is linear}. 	
• Due space V of real vector space V is $\{\alpha \mid \alpha : V \rightarrow \mathbb{R}, \alpha$ is intear}. A. [15%] 是非題. 若錯誤, 需説明原因或給出反例. <u>本題答案須</u> 寫在答案簿最前面	·
 There is a linear transformation A : R³ → R³ such that im A = ker A. A ∈ M_{n×n}. Suppose A² = A then ker A = (im A)[⊥]. For any A, B, C ∈ M_{n×n}, tr(ABC) = tr(CBA). The matrix representation A of an adjoint transformation satisfies A^t = A. Symmetric matrix A is positive definite if and only if all its diagonal elements 	-
positive.	nts are
 B. [85%] 計算/證明題。(6A) 和 (6B) 只選擇一題作答,兩題皆答,以先寫者計算 (1) [15%] Find all Jordan canonical forms for square matrices in M_{n×n}, n ≤ minimal polynomial (t - 1)²(t + 1)². (2) [15%] For A, B ∈ M_{m×n}, show that f_{BA}(t) = f_B(A(t) · t^{m-n}. (3) [15%] Consider V = {A AX = XA, for any X ∈ M_{n×n}} ⊂ M_{n×n}. Show 	3, with
 is an one dimensional subspace of M_{n×n}. (4) [15%] A ∈ M_{n×n}. Suppose (t² + 1) f_A(t), are there ũ, v ∈ ℝⁿ such that A and Av = -ū? Prove or disprove it. (5) [15%] U is a subspace of a finite dimensional vector space V. Consider D_U 	
defined by $\{\alpha \in V^* \mid U \text{ is a subspace of } \ker \alpha\}$. Show that D_U is a subspace of $\dim Q$. dimension $\dim V - \dim U$.	
(6A) [10%] Show the volume V of the parallelepiped span by $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$ sati $V^2 = \vec{\mathbf{u}} ^2 \vec{\mathbf{v}} ^2 + 2 (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}) (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}) (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}})$	SHES
$V^{-} = \mathbf{u} \mathbf{v} \mathbf{w} + \ 2 \ (\mathbf{u} \cdot \mathbf{v}) \ (\mathbf{v} \cdot \mathbf{w}) \ (\mathbf{w} \cdot \mathbf{u}) \\ - \mathbf{u} ^{2} \ (\mathbf{v} \cdot \mathbf{w})^{2} - \mathbf{v} ^{2} \ (\mathbf{w} \cdot \mathbf{u})^{2} - \mathbf{w} ^{2} \ (\mathbf{u} \cdot \mathbf{v})^{2}$	
 (6B) [10%] Following diagram of vector spaces and linear transformations satisf (a) ker f_{i+1} = im f_i, ker g_{i+1} = im g_i, i = 0, 1, 2, 3, 4. (b) α_{i+1} o f_i = g_i o α_i, i = 1, 2, 3, 4. 	es
$ \begin{cases} 0_{A_1} \} \xrightarrow{f_0} A_1 \xrightarrow{f_1} B_1 \xrightarrow{f_2} C_1 \xrightarrow{f_3} D_1 \xrightarrow{f_4} E_1 \xrightarrow{f_5} \\ \alpha_1 \downarrow \cong & \alpha_2 \downarrow \cong & \alpha_3 \downarrow & \alpha_4 \downarrow \cong & \alpha_5 \downarrow \cong \\ \\ \{0_{A_2}\} \xrightarrow{g_0} A_2 \xrightarrow{g_1} B_2 \xrightarrow{g_2} C_2 \xrightarrow{g_3} D_2 \xrightarrow{g_4} E_2 \xrightarrow{g_5} \end{cases} $	$\{0_{E_1}\}$ $\{0_{E_1}\}$
Show that if α_1 , α_2 , α_4 , α_5 are isomorphisms, then α_3 is an isomorphism.	
	· · .
• •	

.

- Unless otherwise specified, everything is over \mathbb{R} .
- The ordinary inner product of \mathbb{R}^n is denoted by $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- *M_{m×n}* is the space of *m×n* matrices; *f_M(t) = det(tI_n M)* is the characteristic polynomial of *M*; im *A* is the image of *A*; ker *A* is the kernel of *A*; V[⊥] is the normal space of *V*. Parallelepiped = 平行六面體.
- Duel space V^* of real vector space V is $\{\alpha \mid \alpha : V \to \mathbb{R}, \alpha \text{ is linear}\}$.

A. [15%] 是非題. 若錯誤, 需説明原因或給出反例. 本題答案須寫在答案簿最前面.

- 1. There is a linear transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$ such that im $A = \ker A$.
- 2. $A \in \mathcal{M}_{n \times n}$. Suppose $A^2 = A$ then ker $A = (\operatorname{im} A)^{\perp}$.
- 3. For any $A, B, C \in \mathcal{M}_{n \times n}, \operatorname{tr}(ABC) = \operatorname{tr}(CBA).$
- 4. The matrix representation A of an self-adjoint transformation satisfies $A^{t} = A$.
- 5. Symmetric matrix A is positive definite if and only if all its diagonal elements are positive.

B. [85%] 計算/證明題。(6A) 和 (6B) 只選擇一題作答,兩題皆答,以先寫者計算。

- (1) [15%] Find all Jordan canonical forms for square matrices in $\mathcal{M}_{n \times n}$, $n \leq 6$, with minimal polynomial $(t-1)^2(t+1)^2$.
- (2) [15%] For $A, B \in \mathcal{M}_{m \times n}$, show that $f_{BA^{t}}(t) = f_{B^{t}A}(t) \cdot t^{m-n}$.
- (3) [15%] Consider $V = \{A \mid AX = XA$, for any $X \in \mathcal{M}_{n \times n}\} \subset \mathcal{M}_{n \times n}$. Show that V is an one dimensional subspace of $\mathcal{M}_{n \times n}$.
- (4) [15%] $A \in \mathcal{M}_{n \times n}$. Suppose $(t^2 + 1)|f_A(t)$, are there nonzero $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$ such that $A\vec{\mathbf{u}} = \vec{\mathbf{v}}$ and $A\vec{\mathbf{v}} = -\vec{\mathbf{u}}$? Prove or disprove it.
- (5) [15%] U is a subspace of a finite dimensional vector space V. Consider $D_U \subset V^*$ defined by $\{\alpha \in V^* \mid U \text{ is a subspace of ker } \alpha\}$. Show that D_U is a subspace of dimension dim $V \dim U$.
- (6A) [10%] Show the volume V of the parallelepiped span by $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$ satisfies

$$V^{2} = ||\mathbf{\vec{u}}||^{2} ||\mathbf{\vec{v}}||^{2} ||\mathbf{\vec{w}}||^{2} + 2 (\mathbf{\vec{u}} \cdot \mathbf{\vec{v}}) (\mathbf{\vec{v}} \cdot \mathbf{\vec{w}}) (\mathbf{\vec{w}} \cdot \mathbf{\vec{u}})$$
$$- ||\mathbf{\vec{u}}||^{2} (\mathbf{\vec{v}} \cdot \mathbf{\vec{w}})^{2} - ||\mathbf{\vec{v}}||^{2} (\mathbf{\vec{w}} \cdot \mathbf{\vec{u}})^{2} - ||\mathbf{\vec{w}}||^{2} (\mathbf{\vec{u}} \cdot \mathbf{\vec{v}})^{2}$$

(6B) [10%] Following diagram of vector spaces and linear transformations satisfies

- (a) ker $f_{i+1} = \operatorname{im} f_i$, ker $g_{i+1} = \operatorname{im} g_i$, i = 0, 1, 2, 3, 4.
- (b) $\alpha_{i+1} \circ f_i = g_i \circ \alpha_i, i = 1, 2, 3, 4.$

$$\{0_{A_1}\} \xrightarrow{f_0} A_1 \xrightarrow{f_1} B_1 \xrightarrow{f_2} C_1 \xrightarrow{f_3} D_1 \xrightarrow{f_4} E_1 \xrightarrow{f_5} \{0_{E_1}\}$$

$$\alpha_1 \downarrow \cong \alpha_2 \downarrow \cong \alpha_3 \downarrow \alpha_4 \downarrow \cong \alpha_5 \downarrow \cong$$

$$\{0_{A_2}\} \xrightarrow{g_0} A_2 \xrightarrow{g_1} B_2 \xrightarrow{g_2} C_2 \xrightarrow{g_3} D_2 \xrightarrow{g_4} E_2 \xrightarrow{g_5} \{0_{E_1}\}$$

Show that if α_1 , α_2 , α_4 , α_5 are isomorphisms, then α_3 is an isomorphism.